ON THE CONVERSION OF FUNCTIONS
INTO SERIES *

Leonhard Euler

§70 In the last chapter we have already partially shown the application
the general expressions found there for the finite differences have for the
investigation of series exhibiting the value of a certain function of x. For, if y
was a given function of x, the value it has for x = 0, will be known; and if this
value is put = A, it will be, as we found,

_xdy L x*ddy _ x3d3y xtdty
YT dx T124  1-2.3 T 1-2-3-ddo?
Therefore, we not only have a, in most cases infinite, series, whose sum is equal
to the constant quantity A, even though the variable quantity x is contained
in each term, but we will also be able to express the function y by means of a
series; for, it will be

—etc. = A.

+

xdy  xxddy Py xdyt
dx 1-2dx?  1-2-3dx3 1-2-3-4dx*

several examples of which were already mentioned.

y=A+ + etc,,

§71 But for this investigation to extend further, let us put that the function y
goes over into z, if one writes x 4+ w instead of x everywhere, so that z is such
a function of x 4+ w as y is of x, and we showed [§ 48] that it will be

*Original title: “De Conversione Functionum in Series”, first published as part of the book
Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, 1755,
reprinted in Opera Omnia: Series 1, Volume 10, pp. 276 - 308, Enestrom-Number E212,
translated by: Alexander Aycock for the , Euler-Kreis Mainz”



wdy N w?ddy w3d’y whdty

dx  1-2dx*>  1-2-3dx3  1-2-3-4dx*
Therefore, since each term of this series can be found by iterated differentiation
of y, having put dx to be constant, and at the same time the value of z can
actually be exhibited by substituting x + w for x, this way one will always
obtain a series equal to the value of z, which, if w was a very small quantity,
converges rapidly and, by taking many terms, will yield an approximately
true value of z. Hence the use of this formula will be huge for approximations.

z=y+ + + + etc.

§72 Therefore, to proceed in order in the demonstration of the vast appli-
cability of this formula, let us at first substitute algebraic functions of x for
y. Let y = x" and, if one writes x + w instead of x, it will be z = (x + w)".
Therefore, since

3
& _ nx"t, ady _ n(n—1)x""2, Ty _ n(n—1)(n—2)x"3,

dx dx? dx3
4
lexji =n(n—1)(n—2)(n—3)x"* etc,

having substituted these values, it will be

-1 —1)(n—-2

(x+w)" =x"+ ?x”_lw + n(111 > >x”_2w2 + n(n 1 2)(713 )x”_3w3 +etc,,
which is the well-known Newtonian expression, by which the power of the
binomial (x + w)" is converted into a series. And the number of terms of this

series is always finite, if n was a positive integer.

§73 Hence we will also be able to find the progression expressing the value
of the power of the binomial in such a way that it terminates, if the exponent
of the power was a negative number. For, let us set

JR— _ux-
Cox4u’

it will be

z=(x+w)"= ( ™ >n

xX+u



and hence one will have

X o nx"u . n(n—1x"u?  n(n—1)(n—2)x"u’ 4 ete
(x +u)r I(x+u)  1-2(x+u)? 1-2-3(x+u)d '

Divide by x?" everywhere and it will be

nx"u on(n—=Dx"u?  n(n—1)(n—2)x "

—-n _ n__ tc.
) = = e Y T o 123 +rup <€
Now put —n = m and this equation will result
oo omx™u om(m+D)x"u? m(m+1)(m +2)x"
_ tc.,
) ="y Y T am 12.3x+up o

which series, if m is a negative integer, will consist of a finite number of terms.
Therefore, this series is equal to the one found first, if one writes u and m
instead of w and n; for, hence it will be

(x+u)" =x"+ mx”ilu + m(m _11.)2xm2“2 i m(m — 1)1(T712.—32)xm3u3 ©ete.

§74 This same series can also be deduced from the expression given at the
beginning of § 70. For, because, if y goes over into A for x =0,

xdy xxddy x3d3y x4d4y B
put y = (x+4)" and it will be A = 4" and, because of
dy _ o1 ddy .
o= nxta) Tl s =n(n—1)(x+a)",
a3y B
g3 = =1 (n=2)(x+a)"" etc,

it will be

n(n—1)

) x*(x+a)"? —etc. = a”;

(x+a)" — ?x(x +a)" 4



divide by a"(x + a)" and this equation will result

w —p oma"x  n(n—1)a"x?
S — etc.,
(x+a) a 1(x+a)+ 1-2(x + a)? etc
which, having substituted #, x and —m for x, a and n respectively, this expres-

sion will turn out to be the series found before.

§75 If one substitutes fractional numbers for m, both series will continue
forever; nevertheless, if 1 was a very small quantity with respect to x, the
series will converge to the true value rapidly. Therefore, let m = £ and x = a;
from the series found first it will be

3
V)b = gt pouw  p(p—v) wu op(p—v)(p—2v) w
(a"+u) a (1 to otV ot o030 5 Tetc ).
But the series found later will give
2 3
v T pu p(p+v)u u(p+v)(u+2v)u
(a"+u) g < * v(a*+u)  v-2v(@+u)?  v-2v-3v(a'+u)d tete ).

But this last series converges more rapidly than the first, since its terms also
decrease, if it was u > a’, in which case the first series even diverges.

Therefore, let y =1, v = 2, it will be

1u 1-3u? 1-3-5u3
Val+u=a 1—|—2 + + :

(@2+u)  2-4(a2+u)?2  2-4-6(a2+u)? +etc.
In like manner, by substituting the numbers 3, 4, 5 etc. for v, while still u =1,
it will be

3 1u 1- 412 1-4-7u8
vVad+u=all1l+ + + E + etc.

3@ 4+u)  3-6(a%+u)? 3:6-9(a®+u

. 1u 1-5u? 1-5-9u3
Vat+u=all+ + + + etc.

4(a*+u)  4-8(a*+u)?  4-8-12(a*+u)d

5 1u 1-6u2 1-6-11u°
vVadb+u=all1+ + + 5 +etc.

5 +u)  5-10(a®+u)?  5-10-15(a® + u)

etc.



§76 From these formulas one can therefore easily find the root of a certain
power of any number. For, having propounded the number ¢, find the power
closest to it, either larger or smaller; in the first case u will become a negative
number, in the second a positive number. But if the resulting series does not
converge fast enough, multiply the number ¢ by any power, say by f", if the
root of the power v has to be extracted, and find the root of the number f"c,
which divided by f will give the root in question of the number c. The greater
the number f is assumed, the more the series will converge and that especially,
if a similar power 2" does not deviate much from f"c.

EXAMPLE 1

Let the square root of the number 2 be in question.

If without any further preparation one puts 2 =1 and u = 1, it will be

1 1-3 1-3-5
2=1 ;
V2 toat o 2T e 8 e

even though this series already converges rapidly, it is nevertheless preferable
to multiply the number 2 by a square, as 25, before, so that the product 50
deviates from another square 49 as less as possible. Therefore, find the square
root of 50, which divided by 5 will give V/2. But then it will be 4 = 7 and
u = 1, whence it will be

33 + etc
-6 -503 '

1 1-3 1
\@_5[2_7<1+2_50+2.4'502+2.4

or

7 1 1.3 1-3-5
V2=3 (H100+100-200+100-200-300+etc‘>’

which is most appropriate for the calculation in decimal numbers. For, it will
be



g —  1.4000000000000

7 1
= 100 = 140000000000
7 1 3
S 2100000000
5 100 200
7 1 3 5
= 100 200 300 = 35000000
7
h i - = 12
the preceding by 100 612500
9
th ding by — = 1102
e preceding by =0 025
the preceding b LI 202
the preceding b B 3
e preceding by 7.5 =
Therefore, vV2 = 1.4142135623730.

EXAMPLE 2

Let the cube root of 3 be in question.

Multiply 3 by the cube 8 and find the cube root of 24; for, it will be /24 = 2/3.
Therefore, put a = 3 and u = —3 and it will be

; 1.3 143 1.4.7.3
V24 =3(1- . .
3( 3.24 36282 3.6.9.243
and
e 3 1 1-4 1-4.7
3=2(1- - te.
V3 2( 38 3.6-8 3-6-9-83+ec>

or
e 3 1 1 4 1 4 7
\/§_2<1 2472418 4B 72+etc'>’

which series already converges rapidly, since every term is more than eight
times smaller than the preceding. But if 3 is multiplied by the cube 729, it will



be 2187 and v/2187 = /133 — 10 = 9+/3. Therefore, because of 2 = 13 and
u = —10, it will be

B (110 1-4-100  1-4-7-10° + ete
9 3.2187 3-6-21872 3-6-9.21873 )

every term of which series is more than two hundred times smaller than the
preceding.

§77 The expansion of the power of the binomial extends so far that all
algebraic functions are comprehended by it. For, if for the sake of an example
the value of this function v/a + 2bx + cxx expressed as a series is in question,
this question can be answered by means of the preceding formulas considering
two terms as one. Furthermore, this expansion can be done by means of the
expression given first; for, if one puts v/a + 2bx + cxx = y, since, having put
x =0,y = a, it will be A = /a, and since the differentials of y will be as
follows

dy b+ cx ddy ac — bb d*y  3(bb—ac)(b+ cx)

dx  \a+2bx+cxx’ A2 (a4 2bx +cxx)? dx3 (a4 2bx + cxx)?

dty  3(bb— ac)(ac — 5bb — 8bcx — 4ccxx)

-7 = etc.,
daxct (a + 2bx 4 cxx)?
from these one will therefore obtain
— _ 3
T 2bx oxr— (b+cx)x  (bb—ac)xx __ (bb ac)(b—i—cx):g
a+2bx+cxx  2(a+2bx+cxx)2  2(a+2bx+cxx):

— _ 4
~ (bb —ac)(5bb — ac + 8bcx —7|— decxx)x® etc. = /i
8(a + 2bx + cxx)2
Therefore, if one multiplies by v/a + 2bx + cxx everywhere, the series will be
rational and it will be

(bb — ac)xx
2(a + 2bx + cxx)

\/a(a—l—be—l—cxx) =a+2bx+cxx — (b+cx)x —



(b —ac)(b+cx)x®  (bb — ac)(5bb — ac 4 8bex 4 4ecxx)x* et
2(a+ 2bx + cxx)? 8(a + 2bx + cxx)3 '

or

bx (bb — ac)xx (bb — ac)(b+ cx)x3
Ve T T oax = vat - -
@ 2bx e = Va+ Vva  2(a+2bx+cxx)y/a  2(a+2bx+ cxx)?\/a

§78 Hence let us go over to transcendental functions and let us substitute
them for y. Therefore, at first let y = log x and having put x + w instead of
x it will be z = log(x + w). But let these logarithms have a ratio of n : 1 to
the hyperbolic logarithms; and for the hyperbolic logarithms it will be n =1
and for the tabulated logarithms it will be n = 0.4343944819032. Hence the
differentials of y = log x will be

dy n

dx x’ dx2  x2" dx®  x3 v
from which one concludes

2 3 4

nw nw nw
2x2  3x3  4xt

In like manner, if w is assumed to be negative, it will be

nw
log(x 4+ w) =logx + ~ + + etc.

log(x — w) = log x nw e - nw? - e —etc
8 — 08 X 2x2  3x3  4x* )

Therefore, if this series is subtracted from the first, it will be

3

i x+w_2 w o w w® W7
8w M\ x a3l T T T

§79 If in the series found first

log(x + w) = log x + nw _ ne + nw’  ne! + etc
& -8 x o 2x2 0 3x3 4t '
one puts
XX
w = ,
u—x

itwill be x + w = %and

etc.



nx nxx
log(x + w) = logu + log x — log(u — x) = logx + i—x  2(u—x) + etc.

and

nx nxx nx3

u—x+2(u—x)2_3(u—x)

and, having taken a negative x, one will have

log(u — x) = logu — 5 +etc.

3 4

log(u + x) = logu + T I
& BT 2u+x)2  3(u+x)3  4(u+x)

7T etc.

Therefore, the logarithms can be found by means of these series in a convenient
manner, if these series converge rapidly. Indeed, the following series, which
are easily deduced from those already found, will be of this kind

log(x+1) =logx+n 1—i—i—i—i%—e’cc
& - 08 x  2xx  3x3  4xt '

1 1 1 1 1 )

log(x —1) = ogx—n<x+2xx T35 T 14 +etc.>,

because these two series differ only in regard to the signs, if they are used
for a calculation, given the logarithm of the number x, at the same time the
logarithms of the two numbers x — 1 and x + 1 will be found. Furthermore,
from the remaining series it will be

1 1 1 1
log(x+1) =log(x —1) +2n <x+3x3+5x5+7x7+etc'>

log(x —1) =logx —n LI ! + ! - L + et
8 -0 x—1 2(x—12 " 3(x—17 4(x—1)34 " €

1 1 1 1
—1 ).
log(x +1) °gx+”<x+1 +2(x+1)2+3(x+1)3+4(x+1)4+etc>



§80 Therefore, given the logarithm of the number x, the logarithms of the
contiguous numbers x + 1 and x — 1 can easily be found; given the logarithm
of the number x — 1, even the logarithm of the number greater by two units
and vice versa will be found. Although this was shown in much detail in the
Introductio, we will nevertheless add certain examples here.

EXAMPLE 1

Given hyperbolic logarithm of the number 10, which is 2.3025850919940, to find the
hyperbolic logarithms of the numbers 11 and 9.

Since this question concerns hyperbolic logarithms, it will be n = 1 and hence
one will have these series

1 1 1 1
log 11 = log 10 4+ — — _ — etc.
08 80T 2102 T3 108 1108 5000 ©F

1 1 1 1
] — log 10 + — _ etc.
0g9 =logl0+ 5+ 59379 T 1108 T5105

To find the sums of these series, collect the even and odd terms separately
and it will be

1 1
10 = (.1000000000000 12 0.0050000000000
1 1
318 0.0003333333333 108 0.0000250000000
1
5105 0.0000020000000 AT 0.0000001666666
1
7107 0.0000000142857 3108 0.0000000012500
1 1
3100 0.0000000001111 10100 — 0.0000000000100
1 1
100 — 0.0000000000009 102 = 0.0000000000001
Sum = (.1003353477310 Sum = 0.05050251679267

10



The sum of both will be 0.1053605156577

The difference of both will be 0.0953101798043

Now log10 = 2.3025850929940

Therefore, it will be log1l = 2397895272793

and log9 = 2.1972245773363

Hence further log3 = 1.0986122886681

and log99 = 4.5951198501346
EXAMPLE 2

Using the hyperbolic logarithm of the number 99 just found to find the logarithm of
the number 101.

For this, apply the series found above, i.e.

2+2+2
3x3  5x5  7x7

in which one has to put x = 100, and it will be

2
log(x+1) = log(x—l)—l— + + etc,,

2 2 2 2
log 101 = 1
0g 101 = 10899+ 356 + 377005 T 51005 T 71007

the sum of which series is calculated to be = 0.0200006667066 from these four
terms, which number added to log 99 will give log 101 = 4.6151205168412.

+ etc.,

EXAMPLE 3

Using the given tabulated logarithm of the number 10, which is = 1, to find the
logarithm of the numbers 11 and 9.

Since here we look for the common logarithm, it will be

n = 0.434244819032;
therefore, having put x = 10, it will be

11



n n n

n
10 2102 " 3108  4.108 T

log11 = log 10 4

n n n n
log9 —loglo—ﬁ—z'loz—3'103—4'104—etc.
Therefore, collect the even and odd terms separately
n n
10 = 0.0434294481903 R 0.0021714724095
n n
R 0.0001447648273 T 0.0000108573620
n n
R — . —_— — . 7
5105 0.0000008685889 ¢ 106 0.0000000723824
n n
1 0.0000000062042 3 1% 0.0000000005428
n n
319 0.0000000000482 0.100 — 0.0000000000043
n n
100 — 0.0000000000004 o102 — 0.0000000000000
Sum = 0.0435750878593 Sum = 0.0021824027010
The aggregate of both is = 0.0457574905603
Their difference is = 0.0413926851583
Therefore, because log10 = 1.0000000000000
it will be log1l = 1.0413926851582
and log9 = 0.9542425094397
hence log3 = 0.4771212547198
and log99 = 1.9956351945980
EXAMPLE 4

Using the tabulated logarithm of the number 99 found here to find the tabulated
logarithm of the number 101.

12



Here, by applying the same series we used in the second example, we will
have

1 1 1
log 101 = log 99 + 2n (100 + 31003 + 51005 —l—etc.) ,

the sum of which series, having substituted the corresponding value for 7,
will quickly be found to be

= 0.0086861791849
having added which to log99 = 1.9956351945980
it results log101 = 2.0043213737829

§81 Now, in our general expression, let us attribute an exponential value to
y and let y = a*; having substituted x + w for x, it will be z = a**%, whose
value, because of the differentials

dy_x ddy_x 2 d3y_x 3
F it loga, T2 =0 (loga)*, T3 =8 (loga)® etc,

will be

loga w?*(loga)? w3(loga)?
rw g (14 9108 8 ) i
a a <+ 1 + 12 + 12.3 +etc. ) ;
if this equation is divided by a¥, the series expressing the values of an expo-
nential quantity will result, which series we already found in the Introductio,
ie.

w . wloga  w?(loga)?  w?(loga)®  w*(loga)
=l 1.2 1.2.3 " 1.2.3.4 ¢
In like manner, for negative w it will be
w_ , wloga «w?(loga)*> «’(loga)® w*(loga)*
at=1- 1.2 1.2.3 1.2.3.4

from whose combination these equations result

13



—1 te.
2 Ty 1234 123456 °F
a“ —a @ wloga w?(loga)®  «w’(loga)®
— tc.,
2 1 " 123 '1.2.3.4.5 °¢

where it is to be noted that loga denotes the hyperbolic logarithm of the
number a.

§82 By means of this formula, given a logarithm, one will be able to find
the number corresponding to it. For, let any logarithm u be propounded,
for which the logarithm of the number a is set = 1. In the same base find
the logarithm coming closest to u and let u = x + w, but let the number
corresponding to x be y = a*; the number corresponding to the logarithm
u = x+ w will be = a*" = z and it will be

B wloga w?*(loga)? w?(loga)® w*(loga)*
z—y(1+ 1 + 1.0 + 12.3 +1.2_3 +etc. |,

which series, because of the very small number w, converges rapidly; we will
show its use in the following example.
EXAMPLE

Let the number equal to this power of two 22" pe in question.

Since 224 = 16777216, it will be 22" = 216777216 nq by taking common loga-
rithms the logarithm of this number will be = 16777216 1og 2. But since

log 2 = 0.30102999566398119521373889,

the logarithm of the number in question will be

5050445.259733675932039063,

whose characteristic indicates that the number in question has 5050446 digits;
since they cannot all be exhibited, it will suffice to have assigned the first few
digits, which must be investigated from the mantissa

14



,259733675932029063 = u.

But from tables one concludes that the number, whose logarithm comes closest
to this, will be = 1.818, which number we want to put y; its logarithm is

X = 0.259593878885948644
whence it will be w = 0.000139797046090419
Because now a = 10
it will be loga = 2.3025850929940456840179914
and wloga = 0.000321894594372400
Further, it will be y = 1.818000000000000000
Lot li’g Ty = 0.000585204372569023 and
2 2
“’(110%”) —  0.000000094187062066
3 3
w (oga)” "~ _ ) 000000000010106102
1-2-3
w*(loga)*
S5%ry = 0.000000000000000813
1818585298569738004

these are the first few digits of the number in question, of which all digits,
except for the maybe the last, are correct.

§83 Let us consider quantities depending on the circle and let, as usual,
the radius of the circle be = 1 and let y denote the arc of the circle, whose
sine is = x, or let y = arcsinx. Write x + w instead of x and it will be
z = arcsin(x 4+ w); to express this value, find the differentials of y [§ 200 of
the first part]

dy __ L ddy__ x Ly 142 Ly 9xter
dx  V1—xx' dx* (1—xx)d’ A (1—axx)i dxt T (1—xx)i]

>y 9472x? +24x*  dby  225x 4 600x> + 120x°

ax® T (1—xx)? | odx® (1—xx)%

15



etc.

Therefore, from these one finds
w w?x w3(1 + 2xx)
VI—xx 2(1—xx)?  6(1—xx)3

w*(9x +6x3)  W?(9+72x% +24x%)
24(1 — xx)? 120(1 — xx)?

arcsin(x + w) = arcsin x +

+ etc.

§84 Therefore, if the arc, whose sine is = x, was known, then, by means
of this formula one will be able to find the arc, whose sine is x + w, if w
was a very small quantity. But the series, whose sum must be added, will be
expressed in parts of the radius, which will easily be reduced to an arc, as it
will be understood from this example.

EXAMPLE

Let the arc of the circle, whose sine is = % = 0.3333333333, be in question.

From tables find the arc, whose sine is approximately 1 but a little bit smaller,
which arc will be 19°28!, whose sine is = 0.3332584. Therefore, put 19°28! =
arcsinx = y; it will be x = 0.3332584 and w = 0.000749 and from tables
V1 —xx = cosy = 0.9428356. Therefore, the arc in question z, whose sine
= % is propounded, will be

w ww siny
cosy  2cos?y’

= 19°28" +

which expression already suffices; therefore, using logarithms in the calculati-
on, it will be

16



logw = 5.8744818

logcosy = 9.9744359
log 2~ = 59000459 © = 0.0000794412
cosy cosy
2
log—2 = 1.8000918
cos? y
3
log 2 = 95483452
cos? y
1.3484370
log2 = 0.3010300
2 o3 2 .
log SV — 10474070 Y0V — 0.0000000011
2cos?y 2cos’y
sum = 0.000794442,

which is the value of the arc to be added to 19°28!, to express which in minutes
and seconds let us take its logarithm, which is

5.9000518
from which subtract 4.6855749

1.2144769
to which logarithm corresponds the number = 16.38615,

which is the number of minutes and seconds; but, expressing this fraction in
thirds and quarters, the arc in question will be

— 19°28"161231M10VgV14 VL,

§85 In like manner, the expression for the cosine will be found; for, having

put y = arccos x, since dy = \/%, the series we found remains unchanged,

as long as its signs are changed. Therefore, it will be

w w?x w?(1+ 2xx)

vl—xx_Z(l—xx)% 6(1 — xx)2

Wt Ox+6x%) W94 72x% 4 24x) et
24(1 — xx)? 120(1 — xx)? !

arccos(x + w) = arccos x —

17



which series, as the preceding, will always converge rapidly, if, consulting

tables of sines, angles close to the true one are chosen, such that in most cases

the first term \/ﬁ? alone suffices. Nevertheless, if x is approximately equal

to 1 or to a sinus totus, then, because of the very small denominators, the
series will only converge slowly. Therefore, in these cases, in which x does not
deviate much from 1, since the differences become very small, it will be more
convenient to use only the usual method of interpolation.

§86 Therefore, let us also substitute the arc, whose tangent is given, for y
and let y = arctan x and z = arctan(x + w), so that

wdy w*ddy = Widly
ix T2 T ead
To investigate the terms, find each differential of y

—+ etc.

z=Yy+

dy 1 ddy —2x Ay  —2+6xx dty  24x —24x°

dx — T4+xx" dx2 (I+xx)2 dxd  (1+xx)3 dx* (I+xx)*’

Ay 2424002 +120x* By —720x +2400x° — 720
dx>  (1+4xx)> 7 dx® (14 xx)>

etc.,

whence one concludes that

arctan(x + w) = arctan x

T+xx (14xx)2  (142xx)3 3 (1+ xx)*

w® 4 » 1 w® 5 10 5
+m x* —2x +g —m X —?x + x | + etc.

§87 This series, whose law of progression is not that obvious, can be transfor-
med into another form, whose structure is immediately clear. For this aim, put

arctan x = 90° — u, so that x = cotu = ‘sf’rfz, itwillbe 1+ xx = ﬁ, whence
dy 1 2 . _ —du _ .2 .
I = T3 = Sin“u. Further, since dx = Sy Of du = —dx sin” u, taking more

differentials, it will be

18



ddy ’

o 2dusinu - cosu = dusin2u = —dxsin” u - sin2u
and hence
dd
ﬁxyz = —sin®u- sin2u,
d3y . . .2 . .
g —dusinu -cosu - sin2u — dusin” u - cos2u = —du sinu - sin 3u
= dxsin® u - sin 3u
and hence
d3
ﬁgxf’ = +sindu- sin 3u,
d4y ) . . .2 .
T3 300 = du sin” u(cosu - sin3u + sinu - cos 3u) = du sin” u - sin4u
= —dxsin* - sin4u
and hence
d4
ngle = — Sin4 . Sin4l/l,
d5y . 3 . . . 3 .
153408 = —du sin® u(cos u - sindu + sin u - cos4u) = —du - sin” u - sin 5u
= +dxsin® u - 5u
and hence
d5
Wyéldxlé = +Sln5 u- Sil‘15u
etc.
From these one concludes that it will be
arctan(x + w) = arctan x + T sInu-sinu — > sin” u - sin 2u + 3 sin” u - sin 3u
Wt 5 6

4 5 6

. . w- . w" .
—Zsm u-sm4u—|—?sm u-smSu—?sm -sin6u + etc.;

because here arctan x = y and arctan x = 90° — u, it will be y = 90° — u.
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§88 If one puts arccotx = y and arccot(x + w) = z, it will be

3d3 4d4

z:y+Wdy+Wdey+ vy + il + etc
dx 1-2dx2  1-2-3dx3  1-2-3-4dx* '
—dx

But, since dy = ; e all terms with exception of the the first of this series
agree with the ones found before, just with different signs. Hence, if, as before,
one puts arctan x = 90° — u or arccot x = u, that u = y, it will be

2 3

w . . w* . 5 . w3
arccot(x + w) = arccotx — T sinu-smu -+ > sin” u - sin2u — 3 sin

u-sin3u

4 5

w™ . w- .
—|—Zs1n4u-s1n4u—?sm5

u - sinbu + etc.,

which expression follows from the preceding immediately; for, since

arccot(x + w) = 90° — arctan(x + w) and arccotx = 90° — arctan x,

it will be

arccot(x + w) — arccotx = — arctan(x 4+ w) + arctan x.

§89 From these expressions many extraordinary corollaries follow, depen-
ding on which values are substituted for the given x and w. Therefore, first
let x = 0, and because u = 90° — arctan x, it will be u = 90° and sinu = 1,
sin2u = 0, sin3u = —1, sin4u = 0, sinbu = 1, sin6u = 0, sin7u = —1 etc.,
whence it will be

W3 W W 0wl

w
t =4 — 4+ — — — .
arctan w 1 3 + 5 ~ + 9 1 + etc.,

which is the well-known series expressing the arc whose tangent is = w.

Let x = 1; it will be arctanx = 45° and hence u = 45°, hence sinu = —

ﬂ’

sin2u =1, sin3u = \% sindu = 0, sin5u = —\%, sinébu = —1, sin7u = —%,

sin8u =0, sin9u = % etc. Hence

arctan(1+ w) =450+ Y w’ + w’ - w + W - o’ + w - w?
- 2 2.2 3.4 5.8 6-8 7-16 9-32 10-32
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11 13 w14

+ v __ @ + —etc
11-64 13-128 14-128 ’
Therefore, if w = —1, because of arctan(1 + w) = 0 and 45° = 1, it will be
7T 1 1 1 1 1 1 1

1
Z= - - — etc,;
1 1222 33 6B 7 o m 0.5 T €

If this value is substituted for 45° in that expression, it will be

w—i—l_w2—1+w3+1_w5+1+w6—1_w7—|—1
1-2 2-2 3.22 5.28 623 7 .24

arctan(1+w) = + etc.

But that series is most appropriate to find the value of 7 approximately.

§90 Because

7 1 1 n 11 1 1
3.-22 5.25 6.28 7.24

421.2-1-2.2 + etc.,

but the terms containing 2, 6, 10 etc. in the denominators, i.e.

1 1 1

1
— — tc.,
22 6.2 105 1427 €
express % arctan %, it will be
T _1 arctan 1 + + LI N + ! + —etc
4 2 2 1.2 3.22 5.2 7.24 9.25 11.26 ’
But because in the other formula for negative w
arctan(l — w) = ! + ! + Lot 1 1 + etc
1.2 2.2 3.22 5.25 .23 7.4 '
w w? WP w® w® w’
— — + — etc.,

12 2.2 3.2 7528 28 7.

if w= 3, it will be
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1 1 1 1 1
arctan(1 — w) = 1_2+2_2+3,2z_5.z3_6.23_7‘24

11 1 LR S S
6-28 7.0

+ etc.

12 22 3.2 5.2

and, having taken the terms divided by 2, 6, 10 etc., it will be

arctanl—lar tanl—f— ! + 1 — 1 — 1 + 1 + et
2 MY Ty T3 T 58 7.8 Tg.p5 THC
— —arctan - — 1 — 1 + 1 + 1 — —etc
2 2 1.-22 3.25 ' 5.28 ' 7.211 g.)pl4 .
and hence
1 rtnl— L 1 n 1 B 1 B et
p arctans = 1.2 "3.22 5.2 7.2 &€
—larctanl— 1 — ! -+ ! + L —etc,;
2 8§ 1-22 3.2°> 5.5  7.21 v

if this value is substituted in the above series and arctan% is converted into a
series, one will find

R N S I

3.21  5.02  7.25 " g.pa TEC

T_ 1 N 1 N 11 ete

4 1-22 3.25 ' 5.8 Tyl g.pl '
1 1 1 1 1

_1,24_3.210_5.216+7.222_9.228+etc'

§90a These and many others follow, if one puts x = 1; but if we put x = V3
that arctan x = 60°, it will be u = 30° and sinu = %, sin2u = ?, sin3u =1,

sindu = @, sinbu = %, sin6u =0, sin7u = —% etc., whence it will be
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w w?y/3 w? w*/3 w® w’

arctan(v/3 + w) = 60° + + +

1.-22 2.23 "3.23 4.25 "5.26 7.28
w3 W w'04/3 wll
+ \C - g T \g - 1 T etc
8-2 9.2 10-2 11-2
But if one puts x = %, so that arctanx = 30°, it will be u = 60° and
sinu = ?, sin2u = @, sin3u = 0, sindu = —?, sinbu = 0, sin7u = @

etc., having substituted which values it will be

1 3w 3wrV3  3Rwr/3 3%
— = 30° — — tc.;
arctan(\/§+w> 30 +1.22 2.3 + 1.0 5.25+ec
therefore, if w = —%, because of 30° = %, it will be
m 1 . I 1 B 1 . 1 n 1 ~ete
6v/3 1:22 2.2% 4.25 5.26 7.28 8.9 '

§91 Let us return to the general expression we found, i.e.

arctan(x + w)

w2 3

w . . .2 . w” . 3
:arCtanx—i—TSlnu-Slnu—?SIH M'Slnzu‘i—?SIn

u - sin3u — etc.

and let us put w = —x, so that arctan(x + w) = 0 and it will be

2 3

X . . X .9 . X" .3
arctanx = Tsmu-smu—i—ism u-sm2u+§sm

u - sin 3u + etc.

cos U
sinu

But because arctanx = 90° —u = Z — y, it will be x = cotu = . Therefore,
2

it will be

4

T ) 1 5, . 1 5 1 .
— =u-+cosu-sinu+ = cos” u-sinu + - cos” u - sin 3u + - cos™ u - sin 4u + etc.,

2 2 3 4

which series is even more remarkable, since, whatever arc is taken for u, the

value of the series always turns out to be the same, = 7.
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But if w = —2x, because of arctan(—x) = — arctan x, it will be

42

2x . . X .2 . 8 .
2arctanx = Ts1nu-s1nu+75m u-sm2u+§sm

34 - sin3u + etc.

But because arctanx = 7 — u and x = ¢, it will be

22 3

2
7'[:2u+Icosu-sinu—kicosZu-sinZu—kgcos3

u - sin 3u + etc.

o o. - . _ 1 . _ 1 . - . _ 1
Let u = 45°; it will 11)e cosu = 5, sinu = \1&, sin2u = 1, sin3u : N
sindu = 0, sinbu = 72 sinbu = —1,sin7u = Nt sin8u = 0, sin9u = 7 etc.

and it will be

t_1,2,2 2 2 2 2 2 2
2 1 2 3 5 6 7 9 10 11 v

which series, even though it diverges, nevertheless is remarkable for its sim-
plicity.

§92 In the general expression we found put

1 -1
Ww=-—X——-=——""
X  sinu-cosu
__ cosu 3
because of x = >/, it will be
1 1 T
arctan(x + w) = arctan [ —— | = — arctan Y + arctan x.
X

Therefore, one will hence obtain the following expression

T sin u sin2u sin 3u sin4u sin 5u

- = + etc.
2 lcosu 2cos?u 3cosPu  4costu  5ScosPu !

which, having put u = 45°, gives the same series we found last.

But if we put w = —+/1 + xx, because of x = £22 it will be

sinu

1

W = ——
smu

and
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arctan(x — v 1+ xx) = —arctan(v1 + xx — x)

= 1artanl— 1<7T artanx)— 1u
T opardan = o\ T e -2

and

arctan x = T u
=5 .
Therefore, it will be

T 1LH—lsinLH—lsinZu—k 1sin3u+lsinélu—l—e’cc:
2 2 1 2 3 4 ’

Therefore, if this equation is differentiated, it will be

1
0= 5 + cos u + cos 2u + cos 3u + cos 4u + cos 5u + etc.,

whose correctness is seen from the nature of recurring series.

§93 In like manner, if the series found before are differentiated, new summa-
ble series will be found. First, from the series

arctan(1 4+ w) = L w + w’ - w + Wt —etc
4 2 2.2 3.4 5.8 6-8 ’
it follows
;_1_8+&2_w74+w75_w76+w78_etc
242w4+w2 2 2 4 8 8 16 32 7
which results from the expansion of this fraction 2742;";@“)2 =3 +2a1, Tz

Further, this series

2 3 4

1 1 1
E:u—kcosu-sinu—i—icos u‘sin2u+§cos u-sin3u—i—1cos -sin4u + etc.,

2

by means of differentiation, will give

2

0 =1+ cos2u + cos - cos 3u + cos> u - cos4u + cos® u - cos 5u + etc.

Finally, the series
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7T sinu sin 2u sin 3u sin4u

— = etc.
2 cosu+2coszu+3cos3u+4cos4u+

gives

1 cos U cos2u  cos3u cosdu

0= ———+ -+ + =+ _——+etc
COS- U COSs’ u COS* U COoSs” u Ccos® u

or

cosu cos2u cos3u cosdu  cosbu
0=1+ + 7 T 3T it = tetc
cosu  cos“u  cos°u  cos*u  cos’u

§94 But especially the expression we found

arctan(x + w)

w2 3

w . . .2 . w~ . 3
:arctanx+Tsmu-smu—73m u-s1n2u—|—?s1n

u - sin3u — etc.,

while

x =cotu or u = arccotx =90° — arctanzx,

can be applied to the angle or the arc corresponding to a given certain tangent.
For, let the tangent = t be propounded and, consulting tables, find the tangent
coming closet to this, call it x, to which the arc = y corresponds, and it will be
u =90° —y. Then, put x +w =t or w = t — x and the arc in question will be

2

w : w
=y+ Tsmu-smu — 7-s1n2u+etc.,

which rule is especially useful, when the propounded tangent was very
large and therefore the arc in question hardly deviates from 90°. For, in
these cases, because of the rapidly increasing tangents, the usual method
of interpolation leads too far away from the true value. Therefore, let this
example be propounded.

EXAMPLE

Let the arc be in question, whose tangent is = 100, having put the radius = 1, of
course.

The arc approximately equal to the one in question is 89°25!, whose tangent is
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x = 98.217943
subtract this from t = 100.000000

it will remain w = 1.782057
Further, because y = 89°25! it will be u = 35!, 2u = 1°10}, 3u = 1°45! etc.
Now investigate each term by means of logarithms.
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To
add

subtract

Therefore
To
add

subtract

subtract

it remains
Therefore

Further to

subtract

subtract

Therefore

log w
log sin u
log sin u

logwsinu - sinu

wsinu - sinu
2

log w sin” u

log w

log 2u

log2

1
log §w2 sin? u - 2u

%wz sin? u - sin 2u
log w®

log sin® u

log sin 3u

log 3

%w3 sin® u - sin 3u

28

0.2509125
8.0077867

8.0077867

6.2664949
4.6855749
1.5809200

38.09956
6.2664949
0.2509215

8.3087941

4.8262105

0.3010300

4.5251805

4.6855749

9.8396056
0.6912000

0.7527645

4.0233601
3.2609725
0.4771213

2.7838512

4.6855749

8.0982763

0.0125400

seconds

seconds

seconds.



Finally, to logw4 = 1.0036860

add logsin*u = 2.0311468
logsindu = 8.6097341
1.6445669
subtract log4d = 0.6020600
1.0425069
subtract 4.6855749
6.3569320

Therefore,

%w‘* sin*u = 0.00023 seconds
Hence

Terms to be added | Terms to be subtracted

38.09956 0.69120
0.01254 0.00023
subtract 0.69143

Hence in total

37.4067 = 371251141V 24V36 V1,

Therefore, the arc, whose tangent is hundred times the radius, will be

89°25'371125M141V24V36V1
and the error does not affect the fourth, but can only occur the fifth, whence
we will be able to confirm that this angle is almost = 89025137175l 141V ¢
an even greater tangent is propounded, even though w might turn out to be

larger, because of the still small angle u, one will nevertheless be able to define
the arc in a convenient way.
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§95 Since here we substituted an arc of the circle for y, let us now substitute
the inverse functions for y, i.e. sinx, cosx, tanx, cotx etc. Therefore, let
y = sinx, and, having written x + w instead of x, it will be z = sin(x + w)
and the equation

2=yt wdy n wrddy — w3d%y n whdty +ete
LAY 2dx? 6dx3  24dx* 7
because of
d dd 3 d*
%zcosx, d—x]z/:—sinx, chZ:_COSX' d—xZ:sinx etc.,
will give
. . 1, . 1 5 1 4.
sin(x + w) = sinx + wcosx — FW sinx — ~w” cosx + S sinx + etc.
and, having taken a negative w, it will be
. . 1, . 1 4 1 4.
sin(x — w) = sinx — wcosx — Sw sinx + g cosx + 5t sinx — etc.

So, if one sets y = cos x, because of

d dd 3 d*
%z—sinx, d—x‘lz/:—cosx, d—xz:sinx, dTZ:COSX etc.,
it will be
cos(x + w) = cosx —wsinx — Ew cos X + 6“] sinx + ﬂw cos x — etc.
and for a negative w it will be
. 1, 1 5. 1 4
cos(x —w) = cosx + wsinx — SW cosx — cw’sinx + 2% cos x + etc.
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§96 The use of these formulas is immense both for the construction and

interpolation of tables of sines and cosines. For, if the sines and cosines of a

certain arc x were known, from them the sines and cosines of the angles x + w

and x — w can be easily found, if the difference w was sufficiently small; for,

in this case the found series converge rapidly. For this it is necessary that the

arc w is expressed in parts of the radius; this, because the arc of 180° is
3.14159265358979323846,

is easily done; for, after a division by 180 it will be

arc of 1° = 0.017453292519943295769
arc of 11 = 0.000290888208665721596
arc of 11 = 0.000048481368110953599.

EXAMPLE 1

To find the sine and the cosine of the angles 45°1" and 44°59!, the given sine and

cosine of the angle 45°, both of which are = % = 0.707167811865.

Therefore, since

sinx = cosx = 0.7071067811865
and

w = 0.0002908882086,

in order to perform the multiplication more easily, note that it will be
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2w = 0.0005817764173
3w = 0.0008726646259
4w = 0.0011635528346
5w = 0.0014544410433
6w = 0.0017453292519
7w = 0.0020362174606
8w = 0.0023271056693
9w = 0.0026179938779

Therefore, w sin x and w cos x will be found this way:

0.00020362174606

0.00000203621746
2908882

20362
2327
29

2
2

7
0
7
1
0
6 . 174532
7
8
1
1
8
6 0

In total

wsinx = w cos x = 0.00020568902488

Therefore,
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%w cosx = 0.00010284451244
by w 1 0.00000002908882
0

2 58177

8 23271

4 1163

4 116

5 14

%wz cosx = 0.00000002991623

%w3 cosx = 0.00000000997208

by w 9 - 0.0000000000261

9 - 26

7 - 2

%wB cosx = 0.0000000000289

Therefore, to find sin45°1! to
sinx = 0.7071067811865
add wcosx = 2056890249
0.7073124702114
subtract %wz sinx = 299162
0.7073124402952
subtract %aﬁ cosx = 29
sin45°11 = 0.7073124402923 = cos44°59"

But to find cos45°1! from
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cosx = 0.7071067811865

subtract wsinx = 2056890249
0.70769010921616
subtract %wz cosx = 299162
0.7069010622454
add éw?’ cosx = 29
cos45°1! = 0.7069010622483 = sin44°59"
EXAMPLE 2

Given sine and cosine of the arc 67°30!, to find the sine and the cosine of the arcs
67°31! and 67°29".

Let us perform this calculation in decimal fractions up to 7 digits, as the
common tables are usually constructed, and hence the task will easily be

solved applying logarithms. Because x = 67°30' and w = 0.000290888, it will
be

log w = 6.4637259

and logsinx = 9.9656153 logcosx = 9.5828397
logw = 6.6437259 logw = 6.6437259
logwsinx = 6.4293412 logwcosx = 6.0465656
1 1,
log 5w = 6.1626959 log Sw = 6.1626959
1 1
log sz sinx = 259200371 log sz cosx = 22092615
Therefore wsinx = 0.00026874 wcosx = 0.00011132
1 1
EwZ sinx = 0.00000004 sz cosx = 0.00000001
whence sin67°311 = 0.9239908 cos67°311 = 0.3824147
sin67°29! = 0.9237681 cos67°29! = 0.3829522
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1,2

where not even the terms 1w? sin x and w? cos x were necessary.

§97 From the series we found above,

. . 1 5. 1 3 1 4.

sin(x + w) =sinx —i—wcosx—iw sinx — cw cosx+ﬁw sinx + etc.
. 1, 1. 1,

cos(x + w) = cosX —wsiny — Sw cosx+6w smx—l—ﬂw cos x — etc.

. . 1 5. 1 3 1 4.

sin(x — w) =SsinY —weosx — Jw s1nx+8w cosx+ﬁw sinx — etc.
. 1, 1, 1,

cos(x — w) :cosx+wsmx—§w CosX — ~w smx%—ﬂw cos x + etc.,

combining them we will find

sin(x 4+ w) + sin(x — w)

2
=sinx — 1wzsimx + lsilnx — Lw6sinx + etc. = sinx - cosw
2 24 720
and
sin(x 4+ w) — sin(x — w)

2
= WCos X — 1w3 Ccos x + Lcu5cosx — Lcu7cosx + etc. = cosx - sinw
6 120 5040 !

whence the series found above for the sines and cosines result to be

smw:w—gw +@w 5040

which same series follow from the first for x = 0; for, because cosx = 1 and
sin x = 0, the first series will exhibit sin w, the second on the other hand cos w.

1 1 1
cosw =1— sz + ﬂw‘l — —720w6 + etc.
1 1 1
3 S W+ etc.,
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§98 Now let us also put y = tanx, so that z = tan(x + w); because of
= SILX 18 506 of the first part]

y= oS X

dy 1 ddy sinx 4% 1 3siffx 3 2

dx  cos?x’ 2dx?2  cosdx’ 2dx3  cos?x  cos*x  costx cos?x’

dty  3sinx _ sinx dy 15 15 2

p— , e J— + ,
2.4dx*  cos®x cosdx’ 24 cosbx costx cosZx
whence it follows that

2 3 4

w w? sin x w w*sin x
5 3 T 5 + etc.
cos? x cos3 x cost x cos® x
tan(x + w) = tanx +
203 w? sin x
— etc.

3cos?x  3cosdx

by means of which formula, given tangent of any angle, one can find the
tangents of angles very close to it. Since the above series is a geometric one,
having collected it into one sum, it will be

w + w?tan x 2w° w* sin x
tan(x + w) = tanx + cos?x —w?  3cos?x 3cosPx ete.
or
sinx - cosx + w 2w° w* sin x
tan(x +w) = cofx—w?  3cos?x  BooPx o

which formula is applied more conveniently for this aim.

§99 Similar expressions can also be found for the logarithms of sines, cosines
and tangents. For, let y = a logarithm of the sine of the angle x, which we want

to express as y = logsinx, and z = log sin(x + w); because of % = EL it

sinx /
. dd n & o
will be 2% = = TY — F21C05X e whence it will be
dx sin® x’ dx sin® x
, , 1w oS X nw? nw? cos x
z = logsin(x + w) = logsinx + —; — 5t —— —etc,
sin x 2sin“ x 3sin” x
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where 1 denotes the number, by which the hyperbolic must be multiplied that
the propounded logarithms result. But if y = tanx and z = log tan(x 4+ w), it

: dy _ n _ 2n ddy _ —2ncos2x
will be dx — sinx-cosx — sin2x’ 2dx2 T (sin2x)2 etc. and hence
log tan(x + w) = log tan x + 2nw _ 2ne” cos 2x + et
0og tan = 10g tan " — " etc.,
& & sin 2x (sin2x)2

by means of which formulas the logarithms of sines and tangents can be
interpolated.

§100 Let us put that y denotes the arc, whose logarithm of the sine is = x, or
that y = A .log x, and that z is the arc, whose logarithm of the sine we want
to put = x + w or z = A .logsin(x + w); it will be x = logsiny and

dx _ ncosy dy siny
dy — siny

, whence -—= = ;
dx ncosy

it will be

ddy  siny

ddy dy dxsiny
dx - dx2 ~ nZcosdy’

= = therefore
dx  ncos?y n2cosPy’

As a logical consequence

wsiny  w?siny
zZ=Y+ + 553 tetc
ncosy  2nccos’y

In like manner, given the logarithm of a cosine, the expression will be found.

Butif y = A.logtanx and z = A .log(x + w), since x = logtany, it will be

dx n dy siny-cosy sin2y
—=—_——— and = = = ,
dy siny-cosy dax n 2n
whence
ddy _ 2dycos2y _ dxsin2y-cos2y
dx 2n B 2nn
and
ddy _sin2y-cos2y sindy % _ sin2y-4y e
dx? 2nn © dnn’ dx® 218 e
hence
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w sin 2y n w?sin2y - cos2y  w3sin2y - cos4y

tc.
2n 4nn 1213 tete

zZ=Yy+

§101 Since the use of these expressions for the construction of tables of loga-
rithms of sines and cosines can easily be seen from the preceding paragraphs,
we will not treat this here any longer. Therefore, lastly let us consider the
value y = e*sinnx and let z = e*t¥ sinn(x + w); since

Z—Z = e*(sinnx + n cosnx)

% = e*((1 — nn) sinnx + 2n cos nx)

Py .

3 e ((1 —3nn)sinnx + n(3 — nn) cos nx)

d4y X 4\ o3

P ((1—6nn+ n*)sinnx + n(4 — 4nn) cos nx)

dsy X 4N\ . 4

P e*((1 —10nn + 5n*) sin nx + n(5 — 10nn + n*) cos nx),

etc.;

having substituted these values and having divided by ¥, it will be

e“sinn(x + w) = sinnx

, 1—nn , . 1—-3nn 5 . 1—6nn+n* , .
4w sinnx + w”sinnx + w’sinnx + —24 w”sinnx + etc.
2n 5 n(3—mnn) , n(4—4nn) ,
+nw cosnx + 7w cosnx + ?w cosnx + Ta) cos nx + etc.

§102 Hence many extraordinary corollaries can be deduced; but it suffices
for us to have mentioned the following things here. If it was x = 0, it will be

, 2n n(3 —nn) n(4 —nn) n(5 — 10n? + n*)

w _ 2 3 4 5

e s1nnw—nw+—2w +76 w +724 w” + 120 w" + etc.
If w = —x, because of sinn(x + w) = 0, it will be
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_o2n.2 , n(B=nn) 3  n(4—4nn) 4 | n(5-10n*4n*) 5
nx — 5 X%+ ——F—x 55 X T ——p  —Xx —etc

_ _ _ 4
1—x+ 15my2  13mm, 3y 1o6mibns 4 e,

tannx =

But in general, if n = 1, one will have

1 1 1 1
e“sin(x + w) = sinx <1 +w— §w3 — 8w4 - %aﬁ + @aﬂ + etc.>

+wecosx [1+w+ 1wz — icu"‘ — lw5 — LaJG + etc
3 30 90 630 )

But if it is n = 0, because sinn(x + w) = n(x + w) and sinnx = nx and
cosnx = 1, and if one divides by n everywhere, we have

1 1 1
w _ Lo 13 4
e (x+w)—x+wx+2w x+6w x+—24w x + etc.

+w + w? + 1w?’ + 1cu4 + iaJS + etc
2 6 24 7
the validity of which equation is obvious.
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