
On the Conversion of Functions

into Series *

Leonhard Euler

§70 In the last chapter we have already partially shown the application
the general expressions found there for the finite differences have for the
investigation of series exhibiting the value of a certain function of x. For, if y
was a given function of x, the value it has for x = 0, will be known; and if this
value is put = A, it will be, as we found,

y− xdy
dx

+
x2ddy

1 · 2dx2 −
x3d3y

1 · 2 · 3 +
x4d4y

1 · 2 · 3 · 4dx4 − etc. = A.

Therefore, we not only have a, in most cases infinite, series, whose sum is equal
to the constant quantity A, even though the variable quantity x is contained
in each term, but we will also be able to express the function y by means of a
series; for, it will be

y = A +
xdy
dx
− xxddy

1 · 2dx2 +
x3d3y

1 · 2 · 3dx3 −
x4dy4

1 · 2 · 3 · 4dx4 + etc.,

several examples of which were already mentioned.

§71 But for this investigation to extend further, let us put that the function y
goes over into z, if one writes x + ω instead of x everywhere, so that z is such
a function of x + ω as y is of x, and we showed [§ 48] that it will be
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„Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, 1755“,
reprinted in Opera Omnia: Series 1, Volume 10, pp. 276 - 308, Eneström-Number E212,
translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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z = y +
ωdy
dx

+
ω2ddy
1 · 2dx2 +

ω3d3y
1 · 2 · 3dx3 +

ω4d4y
1 · 2 · 3 · 4dx4 + etc.

Therefore, since each term of this series can be found by iterated differentiation
of y, having put dx to be constant, and at the same time the value of z can
actually be exhibited by substituting x + ω for x, this way one will always
obtain a series equal to the value of z, which, if ω was a very small quantity,
converges rapidly and, by taking many terms, will yield an approximately
true value of z. Hence the use of this formula will be huge for approximations.

§72 Therefore, to proceed in order in the demonstration of the vast appli-
cability of this formula, let us at first substitute algebraic functions of x for
y. Let y = xn and, if one writes x + ω instead of x, it will be z = (x + ω)n.
Therefore, since

dy
dx

= nxn−1,
ddy
dx2 = n(n− 1)xn−2,

d3y
dx3 = n(n− 1)(n− 2)xn−3,

d4y
dx4 = n(n− 1)(n− 2)(n− 3)xn−4 etc.,

having substituted these values, it will be

(x + ω)n = xn +
n
1

xn−1ω +
n(n− 1)

1 · 2 xn−2ω2 +
n(n− 1)(n− 2)

1 · 2 · 3 xn−3ω3 + etc.,

which is the well-known Newtonian expression, by which the power of the
binomial (x + ω)n is converted into a series. And the number of terms of this
series is always finite, if n was a positive integer.

§73 Hence we will also be able to find the progression expressing the value
of the power of the binomial in such a way that it terminates, if the exponent
of the power was a negative number. For, let us set

ω =
−ux
x + u

;

it will be

z = (x + ω)n =

(
xx

x + u

)n
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and hence one will have

x2n

(x + u)n = xn − nxnu
1(x + u)

+
n(n− 1)xnu2

1 · 2(x + u)2 −
n(n− 1)(n− 2)xnu3

1 · 2 · 3(x + u)3 + etc.

Divide by x2n everywhere and it will be

(x + u)−n = x−n − nx−nu
1(x + u)

+
n(n− 1)x−nu2

1 · 2(x + u)2 −
n(n− 1)(n− 2)x−nu3

1 · 2 · 3(x + u)3 + etc.

Now put −n = m and this equation will result

(x + u)m = xm +
mxmu

1(x + u)
+

m(m + 1)xmu2

1 · 2(x + u)2 +
m(m + 1)(m + 2)xmu3

1 · 2 · 3(x + u)3 + etc.,

which series, if m is a negative integer, will consist of a finite number of terms.
Therefore, this series is equal to the one found first, if one writes u and m
instead of ω and n; for, hence it will be

(x+u)m = xm +
mxm−1u

1
+

m(m− 1)xm−2u2

1 · 2 +
m(m− 1)(m− 2)xm−3u3

1 · 2 · 3 + etc.

§74 This same series can also be deduced from the expression given at the
beginning of § 70. For, because, if y goes over into A for x = 0,

y− xdy
dx

+
xxddy

1 · 2dx2 −
x3d3y

1 · 2 · 3dx3 +
x4d4y

1 · 2 · 3 · 4dx4 − etc. = A,

put y = (x + a)n and it will be A = an and, because of

dy
dx

= n(x + a)n−1,
ddy
dx2 = n(n− 1)(x + a)n−2,

d3y
dx3 = n(n− 1)(n− 2)(x + a)n−3 etc.,

it will be

(x + a)n − n
1

x(x + a)n−1 +
n(n− 1)

1 · 2 x2(x + a)n−2 − etc. = an;
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divide by an(x + a)n and this equation will result

(x + a)−n = a−n − na−nx
1(x + a)

+
n(n− 1)a−nx2

1 · 2(x + a)2 − etc.,

which, having substituted u, x and −m for x, a and n respectively, this expres-
sion will turn out to be the series found before.

§75 If one substitutes fractional numbers for m, both series will continue
forever; nevertheless, if u was a very small quantity with respect to x, the
series will converge to the true value rapidly. Therefore, let m = µ

ν and x = aν;
from the series found first it will be

(aν +u)
µ
ν = aµ

(
1 +

µ

ν
· u

aν
+

µ(µ− ν)

ν · 2ν
· uu

a2ν
+

µ(µ− ν)(µ− 2ν)

ν · 2ν · 3ν
· u3

a3ν
+ etc.

)
.

But the series found later will give

(aν +u)
µ
ν = aµ

(
1 +

µu
ν(aν + u)

+
µ(µ + ν)u2

ν · 2ν(aν + u)2 +
µ(µ + ν)(µ + 2ν)u3

ν · 2ν · 3ν(aν + u)3 + etc.
)

.

But this last series converges more rapidly than the first, since its terms also
decrease, if it was u > aν, in which case the first series even diverges.

Therefore, let µ = 1, ν = 2, it will be

√
a2 + u = a

(
1 +

1u
2(a2 + u)

+
1 · 3u2

2 · 4(a2 + u)2 +
1 · 3 · 5u3

2 · 4 · 6(a2 + u)3 + etc.

)
.

In like manner, by substituting the numbers 3, 4, 5 etc. for ν, while still µ = 1,
it will be

3
√

a3 + u = a
(

1 +
1u

3(a3 + u)
+

1 · 4u2

3 · 6(a3 + u)2 +
1 · 4 · 7u3

3 · 6 · 9(a3 + u)3 + etc.
)

4
√

a4 + u = a
(

1 +
1u

4(a4 + u)
+

1 · 5u2

4 · 8(a4 + u)2 +
1 · 5 · 9u3

4 · 8 · 12(a4 + u)3 + etc.
)

5
√

a5 + u = a
(

1 +
1u

5(a5 + u)
+

1 · 6u2

5 · 10(a5 + u)2 +
1 · 6 · 11u3

5 · 10 · 15(a5 + u)3 + etc.
)

etc.
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§76 From these formulas one can therefore easily find the root of a certain
power of any number. For, having propounded the number c, find the power
closest to it, either larger or smaller; in the first case u will become a negative
number, in the second a positive number. But if the resulting series does not
converge fast enough, multiply the number c by any power, say by f ν, if the
root of the power ν has to be extracted, and find the root of the number f νc,
which divided by f will give the root in question of the number c. The greater
the number f is assumed, the more the series will converge and that especially,
if a similar power aν does not deviate much from f νc.

EXAMPLE 1

Let the square root of the number 2 be in question.

If without any further preparation one puts a = 1 and u = 1, it will be

√
2 = 1 +

1
2 · 2 +

1 · 3
2 · 4 · 22 +

1 · 3 · 5
2 · 4 · 6 · 23 + etc.;

even though this series already converges rapidly, it is nevertheless preferable
to multiply the number 2 by a square, as 25, before, so that the product 50
deviates from another square 49 as less as possible. Therefore, find the square
root of 50, which divided by 5 will give

√
2. But then it will be a = 7 and

u = 1, whence it will be

√
50 = 5

√
2 = 7

(
1 +

1
2 · 50

+
1 · 3

2 · 4 · 502 +
1 · 3 · 5

2 · 4 · 6 · 503 + etc.
)

or

√
2 =

7
5

(
1 +

1
100

+
1 · 3

100 · 200
+

1 · 3 · 5
100 · 200 · 300

+ etc.
)

,

which is most appropriate for the calculation in decimal numbers. For, it will
be
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7
5

= 1.4000000000000

7
5
· 1

100
= 140000000000

7
5
· 1

100
· 3

200
= 2100000000

7
5
· 1

100
· 3

200
· 5

300
= 35000000

the preceding by
7

400
= 612500

the preceding by
9

500
= 11025

the preceding by
11
600

= 202

the preceding by
13
400

= 3

Therefore,
√

2 = 1.4142135623730.

EXAMPLE 2

Let the cube root of 3 be in question.

Multiply 3 by the cube 8 and find the cube root of 24; for, it will be 3
√

24 = 2 3
√

3.
Therefore, put a = 3 and u = −3 and it will be

3
√

24 = 3
(

1− 1 · 3
3 · 24

+
1 · 4 · 32

3 · 6 · 242 −
1 · 4 · 7 · 32

3 · 6 · 9 · 243 + etc.
)

and

3
√

3 =
3
2

(
1− 1

3 · 8 +
1 · 4

3 · 6 · 82 −
1 · 4 · 7

3 · 6 · 9 · 83 + etc.
)

or

3
√

3 =
3
2

(
1− 1

24
+

1
24
· 4

48
− 1

24
· 4

48
· 7

72
+ etc.

)
,

which series already converges rapidly, since every term is more than eight
times smaller than the preceding. But if 3 is multiplied by the cube 729, it will
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be 2187 and 3
√

2187 =
√

133 − 10 = 9 3
√

3. Therefore, because of a = 13 and
u = −10, it will be

3
√

3 =
13
9

(
1− 1 · 10

3 · 2187
+

1 · 4 · 102

3 · 6 · 21872 −
1 · 4 · 7 · 103

3 · 6 · 9 · 21873 + etc.
)

,

every term of which series is more than two hundred times smaller than the
preceding.

§77 The expansion of the power of the binomial extends so far that all
algebraic functions are comprehended by it. For, if for the sake of an example
the value of this function

√
a + 2bx + cxx expressed as a series is in question,

this question can be answered by means of the preceding formulas considering
two terms as one. Furthermore, this expansion can be done by means of the
expression given first; for, if one puts

√
a + 2bx + cxx = y, since, having put

x = 0, y = a, it will be A =
√

a, and since the differentials of y will be as
follows

dy
dx

=
b + cx√

a + 2bx + cxx
,

ddy
dx2 =

ac− bb

(a + 2bx + cxx)
3
2

,
d3y
dx3 =

3(bb− ac)(b + cx)

(a + 2bx + cxx)
5
2

,

d4y
dx4 =

3(bb− ac)(ac− 5bb− 8bcx− 4ccxx)

(a + 2bx + cxx)
7
2

etc.,

from these one will therefore obtain

√
a + 2bx + cxx− (b + cx)x√

a + 2bx + cxx
− (bb− ac)xx

2(a + 2bx + cxx)
3
2
− (bb− ac)(b + cx)x3

2(a + 2bx + cxx)
5
2

− (bb− ac)(5bb− ac + 8bcx + 4ccxx)x4

8(a + 2bx + cxx)
7
2

− etc. =
√

a

Therefore, if one multiplies by
√

a + 2bx + cxx everywhere, the series will be
rational and it will be

√
a(a + 2bx + cxx) = a + 2bx + cxx− (b + cx)x− (bb− ac)xx

2(a + 2bx + cxx)
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− (bb− ac)(b + cx)x3

2(a + 2bx + cxx)2 −
(bb− ac)(5bb− ac + 8bcx + 4ccxx)x4

8(a + 2bx + cxx)3 − etc.

or

√
a + 2bx + cxx =

√
a+

bx√
a
− (bb− ac)xx

2(a + 2bx + cxx)
√

a
− (bb− ac)(b + cx)x3

2(a + 2bx + cxx)2
√

a
− etc.

§78 Hence let us go over to transcendental functions and let us substitute
them for y. Therefore, at first let y = log x and having put x + ω instead of
x it will be z = log(x + ω). But let these logarithms have a ratio of n : 1 to
the hyperbolic logarithms; and for the hyperbolic logarithms it will be n = 1
and for the tabulated logarithms it will be n = 0.4343944819032. Hence the
differentials of y = log x will be

dy
dx

=
n
x

,
ddy
dx2 = − n

x2 ,
d3y
dx3 =

2n
x3 etc.,

from which one concludes

log(x + ω) = log x +
nω

x
− nω2

2x2 +
nω3

3x3 −
nω4

4x4 + etc.

In like manner, if ω is assumed to be negative, it will be

log(x−ω) = log x− nω

x
− nω2

2x2 −
nω3

3x3 −
nω4

4x4 − etc.

Therefore, if this series is subtracted from the first, it will be

log
x + ω

x−ω
= 2n

(
ω

x
+

ω3

3x3 +
ω5

5x5 +
ω7

7x7 + etc.
)

.

§79 If in the series found first

log(x + ω) = log x +
nω

x
− nω2

2x2 +
nω3

3x3 −
nω4

4x4 + etc.

one puts

ω =
xx

u− x
,

it will be x + ω = ux
u−x and
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log(x + ω) = log u + log x− log(u− x) = log x +
nx

u− x
− nxx

2(u− x)2 + etc.

and

log(u− x) = log u− nx
u− x

+
nxx

2(u− x)2 −
nx3

3(u− x)3 + etc.

and, having taken a negative x, one will have

log(u + x) = log u +
nx

u + x
+

nxx
2(u + x)2 +

nx3

3(u + x)3 +
nx4

4(u + x)4 + etc.

Therefore, the logarithms can be found by means of these series in a convenient
manner, if these series converge rapidly. Indeed, the following series, which
are easily deduced from those already found, will be of this kind

log(x + 1) = log x + n
(

1
x
− 1

2xx
+

1
3x3 −

1
4x4 + etc.

)

log(x− 1) = log x− n
(

1
x
+

1
2xx

+
1

3x3 +
1

4x4 + etc.
)

;

because these two series differ only in regard to the signs, if they are used
for a calculation, given the logarithm of the number x, at the same time the
logarithms of the two numbers x− 1 and x + 1 will be found. Furthermore,
from the remaining series it will be

log(x + 1) = log(x− 1) + 2n
(

1
x
+

1
3x3 +

1
5x5 +

1
7x7 + etc.

)

log(x− 1) = log x− n
(

1
x− 1

− 1
2(x− 1)2 +

1
3(x− 1)3 −

1
4(x− 1)4 + etc.

)

log(x + 1) = log x + n
(

1
x + 1

+
1

2(x + 1)2 +
1

3(x + 1)3 +
1

4(x + 1)4 + etc.
)

.
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§80 Therefore, given the logarithm of the number x, the logarithms of the
contiguous numbers x + 1 and x− 1 can easily be found; given the logarithm
of the number x− 1, even the logarithm of the number greater by two units
and vice versa will be found. Although this was shown in much detail in the
Introductio, we will nevertheless add certain examples here.

EXAMPLE 1

Given hyperbolic logarithm of the number 10, which is 2.3025850919940, to find the
hyperbolic logarithms of the numbers 11 and 9.

Since this question concerns hyperbolic logarithms, it will be n = 1 and hence
one will have these series

log 11 = log 10 +
1

10
− 1

2 · 102 +
1

3 · 103 −
1

4 · 104 +
1

5 · 105 − etc.

log 9 = log 10 +
1

10
+

1
2 · 102 +

1
3 · 103 +

1
4 · 104 +

1
5 · 105 − etc.

To find the sums of these series, collect the even and odd terms separately
and it will be

1
10

= 0.1000000000000
1

2 · 102 = 0.0050000000000

1
3 · 103 = 0.0003333333333

1
4 · 104 = 0.0000250000000

1
5 · 105 = 0.0000020000000

1
6 · 106 = 0.0000001666666

1
7 · 107 = 0.0000000142857

1
8 · 108 = 0.0000000012500

1
3 · 109 = 0.0000000001111

1
10 · 1010 = 0.0000000000100

1
11 · 1011 = 0.0000000000009

1
12 · 1012 = 0.0000000000001

Sum = 0.1003353477310 Sum = 0.05050251679267
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The sum of both will be 0.1053605156577

The difference of both will be 0.0953101798043

Now log 10 = 2.3025850929940

Therefore, it will be log 11 = 2.397895272793

and log 9 = 2.1972245773363

Hence further log 3 = 1.0986122886681

and log 99 = 4.5951198501346

EXAMPLE 2

Using the hyperbolic logarithm of the number 99 just found to find the logarithm of
the number 101.

For this, apply the series found above, i.e.

log(x + 1) = log(x− 1) +
2
x
+

2
3x3 +

2
5x5 +

2
7x7 + etc.,

in which one has to put x = 100, and it will be

log 101 = log 99 +
2

100
+

2
3 · 1003 +

2
5 · 1005 +

2
7 · 1007 + etc.,

the sum of which series is calculated to be = 0.0200006667066 from these four
terms, which number added to log 99 will give log 101 = 4.6151205168412.

EXAMPLE 3

Using the given tabulated logarithm of the number 10, which is = 1, to find the
logarithm of the numbers 11 and 9.

Since here we look for the common logarithm, it will be

n = 0.434244819032;

therefore, having put x = 10, it will be
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log 11 = log 10 +
n
10
− n

2 · 102 +
n

3 · 103 −
n

4 · 104 + etc.

log 9 = log 10− n
10
− n

2 · 102 −
n

3 · 103 −
n

4 · 104 − etc.

Therefore, collect the even and odd terms separately

n
10

= 0.0434294481903
n

2 · 102 = 0.0021714724095

n
3 · 103 = 0.0001447648273

n
4 · 104 = 0.0000108573620

n
5 · 105 = 0.0000008685889

n
6 · 106 = 0.0000000723824

n
7 · 107 = 0.0000000062042

n
8 · 108 = 0.0000000005428

n
3 · 109 = 0.0000000000482

n
10 · 1010 = 0.0000000000043

n
11 · 1011 = 0.0000000000004

n
12 · 1012 = 0.0000000000000

Sum = 0.0435750878593 Sum = 0.0021824027010

The aggregate of both is = 0.0457574905603

Their difference is = 0.0413926851583

Therefore, because log 10 = 1.0000000000000

it will be log 11 = 1.0413926851582

and log 9 = 0.9542425094397

hence log 3 = 0.4771212547198

and log 99 = 1.9956351945980

EXAMPLE 4

Using the tabulated logarithm of the number 99 found here to find the tabulated
logarithm of the number 101.
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Here, by applying the same series we used in the second example, we will
have

log 101 = log 99 + 2n
(

1
100

+
1

3 · 1003 +
1

5 · 1005 + etc.
)

,

the sum of which series, having substituted the corresponding value for n,
will quickly be found to be

= 0.0086861791849

having added which to log 99 = 1.9956351945980

it results log 101 = 2.0043213737829

§81 Now, in our general expression, let us attribute an exponential value to
y and let y = ax; having substituted x + ω for x, it will be z = ax+ω, whose
value, because of the differentials

dy
dx

= ax log a,
ddy
dx2 = ax(log a)2,

d3y
dx3 = ax(log a)3 etc.,

will be

ax+ω = ax
(

1 +
ω log a

1
+

ω2(log a)2

1 · 2 +
ω3(log a)3

1 · 2 · 3 + etc.
)

;

if this equation is divided by ax, the series expressing the values of an expo-
nential quantity will result, which series we already found in the Introductio,
i.e.

aω = 1 +
ω log a

1
+

ω2(log a)2

1 · 2 +
ω3(log a)3

1 · 2 · 3 +
ω4(log a)4

1 · 2 · 3 · 4 + etc.

In like manner, for negative ω it will be

a−ω = 1− ω log a
1

+
ω2(log a)2

1 · 2 − ω3(log a)3

1 · 2 · 3 +
ω4(log a)4

1 · 2 · 3 · 4 − etc.,

from whose combination these equations result
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aω + a−ω

2
= 1 +

ω2(log a)2

1 · 2 +
ω4(log a)4

1 · 2 · 3 · 4 +
ω6(log a)6

1 · 2 · 3 · 4 · 5 · 6 + etc.

aω − a−ω

2
=

ω log a
1

+
ω3(log a)3

1 · 2 · 3 +
ω5(log a)5

1 · 2 · 3 · 4 · 5 + etc.,

where it is to be noted that log a denotes the hyperbolic logarithm of the
number a.

§82 By means of this formula, given a logarithm, one will be able to find
the number corresponding to it. For, let any logarithm u be propounded,
for which the logarithm of the number a is set = 1. In the same base find
the logarithm coming closest to u and let u = x + ω, but let the number
corresponding to x be y = ax; the number corresponding to the logarithm
u = x + ω will be = ax+ω = z and it will be

z = y
(

1 +
ω log a

1
+

ω2(log a)2

1 · 2 +
ω3(log a)3

1 · 2 · 3 +
ω4(log a)4

1 · 2 · 3 · 4 + etc.
)

,

which series, because of the very small number ω, converges rapidly; we will
show its use in the following example.

EXAMPLE

Let the number equal to this power of two 2224
be in question.

Since 224 = 16777216, it will be 2224
= 216777216 and by taking common loga-

rithms the logarithm of this number will be = 16777216 log 2. But since

log 2 = 0.30102999566398119521373889,

the logarithm of the number in question will be

5050445.259733675932039063,

whose characteristic indicates that the number in question has 5050446 digits;
since they cannot all be exhibited, it will suffice to have assigned the first few
digits, which must be investigated from the mantissa
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, 259733675932029063 = u.

But from tables one concludes that the number, whose logarithm comes closest
to this, will be = 1.818, which number we want to put y; its logarithm is

x = 0.259593878885948644

whence it will be ω = 0.000139797046090419

Because now a = 10

it will be log a = 2.3025850929940456840179914

and ω log a = 0.000321894594372400

Further, it will be y = 1.818000000000000000

ω log a
1

y = 0.000585204372569023

ω2(log a)2

1 · 2 y = 0.000000094187062066

ω3(log a)3

1 · 2 · 3 y = 0.000000000010106102

ω4(log a)4

1 · 2 · 3 · 4 y = 0.000000000000000813

1818585298569738004

and

these are the first few digits of the number in question, of which all digits,
except for the maybe the last, are correct.

§83 Let us consider quantities depending on the circle and let, as usual,
the radius of the circle be = 1 and let y denote the arc of the circle, whose
sine is = x, or let y = arcsin x. Write x + ω instead of x and it will be
z = arcsin(x + ω); to express this value, find the differentials of y [§ 200 of
the first part]

dy
dx

=
1√

1− xx
,

ddy
dx2 =

x

(1− xx)
3
2

,
d3y
dx3 =

1 + 2xx

(1− xx)
5
2

,
d4y
dx4 =

9x + 6x3

(1− xx)
7
2

,

d5y
dx5 =

9 + 72x2 + 24x4

(1− xx)
9
2

,
d6y
dx6 =

225x + 600x3 + 120x5

(1− xx)
11
2
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etc.

Therefore, from these one finds

arcsin(x + ω) = arcsin x +
ω√

1− xx
+

ω2x

2(1− xx)
3
2
+

ω3(1 + 2xx)

6(1− xx)
5
2

+
ω4(9x + 6x3)

24(1− xx)
7
2
+

ω5(9 + 72x2 + 24x4)

120(1− xx)
9
2

+ etc.

§84 Therefore, if the arc, whose sine is = x, was known, then, by means
of this formula one will be able to find the arc, whose sine is x + ω, if ω

was a very small quantity. But the series, whose sum must be added, will be
expressed in parts of the radius, which will easily be reduced to an arc, as it
will be understood from this example.

EXAMPLE

Let the arc of the circle, whose sine is = 1
3 = 0.3333333333, be in question.

From tables find the arc, whose sine is approximately 1
3 but a little bit smaller,

which arc will be 19◦28I, whose sine is = 0.3332584. Therefore, put 19◦28I =
arcsin x = y; it will be x = 0.3332584 and ω = 0.000749 and from tables√

1− xx = cos y = 0.9428356. Therefore, the arc in question z, whose sine
= 1

3 is propounded, will be

= 19◦28I +
ω

cos y
+

ωω sin y
2 cos3 y

,

which expression already suffices; therefore, using logarithms in the calculati-
on, it will be
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log ω = 5.8744818

log cos y = 9.9744359

log
ω

cos y
= 5.9000459

ω

cos y
= 0.0000794412

log
ω2

cos2 y
= 1.8000918

log
ω3

cos3 y
= 9.5483452

1.3484370

log 2 = 0.3010300

l,og
ω2 sin y
2 cos2 y

= 1.0474070
ω2 sin y
2 cos3 y

= 0.0000000011

sum = 0.000794442,
which is the value of the arc to be added to 19◦28I, to express which in minutes
and seconds let us take its logarithm, which is

5.9000518

from which subtract 4.6855749

1.2144769

to which logarithm corresponds the number = 16.38615,

which is the number of minutes and seconds; but, expressing this fraction in
thirds and quarters, the arc in question will be

= 19◦28I16II23III10IV8V14VI.

§85 In like manner, the expression for the cosine will be found; for, having
put y = arccos x, since dy = −dx√

1−xx
, the series we found remains unchanged,

as long as its signs are changed. Therefore, it will be

arccos(x + ω) = arccos x− ω√
1− xx

− ω2x

2(1− xx)
3
2
− ω3(1 + 2xx)

6(1− xx)
5
2

−ω4(9x + 6x3)

24(1− xx)
7
2
− ω5(9 + 72x2 + 24x4)

120(1− xx)
9
2

− etc.,
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which series, as the preceding, will always converge rapidly, if, consulting
tables of sines, angles close to the true one are chosen, such that in most cases
the first term ω√

1−xx
alone suffices. Nevertheless, if x is approximately equal

to 1 or to a sinus totus, then, because of the very small denominators, the
series will only converge slowly. Therefore, in these cases, in which x does not
deviate much from 1, since the differences become very small, it will be more
convenient to use only the usual method of interpolation.

§86 Therefore, let us also substitute the arc, whose tangent is given, for y
and let y = arctan x and z = arctan(x + ω), so that

z = y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 + etc.

To investigate the terms, find each differential of y

dy
dx

=
1

1 + xx
,

ddy
dx2 =

−2x
(1 + xx)2 ,

d3y
dx3 =

−2 + 6xx
(1 + xx)3 ,

d4y
dx4 =

24x− 24x3

(1 + xx)4 ,

d5y
dx5 =

24.240x2 + 120x4

(1 + xx)5 ,
d5y
dx5 =

−720x + 2400x3 − 720x5

(1 + xx)5

etc.,

whence one concludes that

arctan(x + ω) = arctan x

+
ω

1 + xx
− ω2x

(1 + xx)2 +
ω3

(1 + xx)3

(
xx− 1

3

)
− ω4

(1 + xx)4 (x3 − x)

+
ω5

(1 + xx)5

(
x4 − 2x2 +

1
5

)
− ω6

(1 + xx)6

(
x5 − 10

3
x3 + x

)
+ etc.

§87 This series, whose law of progression is not that obvious, can be transfor-
med into another form, whose structure is immediately clear. For this aim, put
arctan x = 90◦ − u, so that x = cot u = cos u

sin u ; it will be 1 + xx = 1
sin2 u

, whence
dy
dx = 1

1+xx = sin2 u. Further, since dx = −du
sin2 u

or du = −dx sin2 u, taking more
differentials, it will be
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ddy
dx

= 2du sin u · cos u = du sin 2u = −dx sin2 u · sin 2u

and hence

ddy
1dx2 = − sin2 u · sin 2u,

d3y
2dx2 = −du sin u · cos u · sin 2u− du sin2 u · cos 2u = −du sin u · sin 3u

= dx sin3 u · sin 3u

and hence

d3y
1 · 2dx3 = + sin3 u · sin 3u,

d4y
1 · 2 · 3dx3 = du sin2 u(cos u · sin 3u + sin u · cos 3u) = du sin2 u · sin 4u

= −dx sin4 · sin 4u

and hence

d4y
1 · 2 · 3dx4 = − sin4 · sin 4u,

d5y
1 · 2 · 3 · 4dx4 = −du sin3 u(cos u · sin 4u+ sin u · cos 4u) = −du · sin3 u · sin 5u

= +dx sin5 u · 5u

and hence

d5y
1 · 2 · 3 · 4dx5 = + sin5 u · sin 5u

etc.

From these one concludes that it will be

arctan(x+ω) = arctan x+
ω

1
sin u · sin u− ω2

2
sin2 u · sin 2u+

ω3

3
sin3 u · sin 3u

−ω4

4
sin4 u · sin 4u +

ω5

5
sin5 u · sin 5u− ω6

6
sin6 · sin 6u + etc.;

because here arctan x = y and arctan x = 90◦ − u, it will be y = 90◦ − u.

19



§88 If one puts arccot x = y and arccot(x + ω) = z, it will be

z = y +
ωdy
dx

+
ω2ddy
1 · 2dx2 +

ω3d3y
1 · 2 · 3dx3 +

ω4d4y
1 · 2 · 3 · 4dx4 + etc.

But, since dy = −dx
1+xx , all terms with exception of the the first of this series

agree with the ones found before, just with different signs. Hence, if, as before,
one puts arctan x = 90◦ − u or arccot x = u, that u = y, it will be

arccot(x+ω) = arccot x− ω

1
sin u · sin u+

ω2

2
sin2 u · sin 2u− ω3

3
sin3 u · sin 3u

+
ω4

4
sin4 u · sin 4u− ω5

5
sin5 u · sin 5u + etc.,

which expression follows from the preceding immediately; for, since

arccot(x + ω) = 90◦ − arctan(x + ω) and arccot x = 90◦ − arctan x,

it will be

arccot(x + ω)− arccot x = − arctan(x + ω) + arctan x.

§89 From these expressions many extraordinary corollaries follow, depen-
ding on which values are substituted for the given x and ω. Therefore, first
let x = 0, and because u = 90◦ − arctan x, it will be u = 90◦ and sin u = 1,
sin 2u = 0, sin 3u = −1, sin 4u = 0, sin 5u = 1, sin 6u = 0, sin 7u = −1 etc.,
whence it will be

arctan ω =
ω

1
− ω3

3
+

ω5

5
− ω7

7
+

ω9

9
− ω11

11
+ etc.,

which is the well-known series expressing the arc whose tangent is = ω.

Let x = 1; it will be arctan x = 45◦ and hence u = 45◦, hence sin u = 1√
2
,

sin 2u = 1, sin 3u = 1√
2
, sin 4u = 0, sin 5u = − 1√

2
, sin 6u = −1, sin 7u = − 1√

2
,

sin 8u = 0, sin 9u = 1√
2

etc. Hence

arctan(1+ω) = 45◦+
ω

2
− ω2

2 · 2 +
ω3

3 · 4 −
ω5

5 · 8 +
ω6

6 · 8 −
ω7

7 · 16
+

ω9

9 · 32
− ω10

10 · 32
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+
ω11

11 · 64
− ω13

13 · 128
+

ω14

14 · 128
− etc.

Therefore, if ω = −1, because of arctan(1 + ω) = 0 and 45◦ = π
4 , it will be

π

4
=

1
1 · 2 +

1
2 · 2 +

1
3 · 23 −

1
6 · 23 −

1
7 · 24 +

1
9 · 25 +

1
10 · 25 +

1
11 · 26 − etc.;

If this value is substituted for 45◦ in that expression, it will be

arctan(1+ω) =
ω + 1
1 · 2 −

ω2 − 1
2 · 2 +

ω3 + 1
3 · 22 −

ω5 + 1
5 · 23 +

ω6 − 1
6 · 23 −

ω7 + 1
7 · 24 + etc.

But that series is most appropriate to find the value of π
4 approximately.

§90 Because

π

4
=

1
1 · 2 +

1
2 · 2 +

1
3 · 22 −

1
5 · 23 −

1
6 · 23 −

1
7 · 24 + etc.,

but the terms containing 2, 6, 10 etc. in the denominators, i.e.

1
2 · 2 −

1
6 · 23 +

1
10 · 25 −

1
14 · 27 + etc.,

express 1
2 arctan 1

2 , it will be

π

4
=

1
2

arctan
1
2
+

1
1 · 2 +

1
3 · 22 −

1
5 · 23 −

1
7 · 24 +

1
9 · 25 +

1
11 · 26 − etc.

But because in the other formula for negative ω

arctan(1−ω) =
1

1 · 2 +
1

2 · 2 +
1

3 · 22 −
1

5 · 23 −
1

6 · 23 −
1

7 · 24 + etc.

− ω

1 · 2 −
ω2

2 · 2 −
ω3

3 · 22 +
ω5

5 · 23 +
ω6

6 · 23 +
ω7

7 · 24 − etc.,

if ω = 1
2 , it will be
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arctan(1−ω) =
1

1 · 2 +
1

2 · 2 +
1

3 · 22 −
1

5 · 23 −
1

6 · 23 −
1

7 · 24 + etc.

− 1
1 · 2 −

1
2 · 2 −

1
3 · 22 +

1
5 · 23 +

1
6 · 23 +

1
7 · 24 − etc.

and, having taken the terms divided by 2, 6, 10 etc., it will be

arctan
1
2
=

1
2

arctan
1
2
+

1
1 · 2 +

1
3 · 23 −

1
5 · 23 −

1
7 · 24 +

1
9 · 25 + etc.

− 1
2

arctan
1
2
− 1

1 · 22 −
1

3 · 25 +
1

5 · 28 +
1

7 · 211 −
1

9 · 214 − etc.

and hence

1
2

arctan
1
2
= +

1
1 · 2 +

1
3 · 22 −

1
5 · 23 −

1
7 · 24 + etc.

− 1
2

arctan
1
8
− 1

1 · 22 −
1

3 · 25 +
1

5 · 58 +
1

7 · 211 − etc.;

if this value is substituted in the above series and arctan 1
8 is converted into a

series, one will find

π

4
=



1 +
1

3 · 21 −
1

5 · 22 −
1

7 · 23 +
1

9 · 24 + etc.

− 1
1 · 22 −

1
3 · 25 +

1
5 · 28 +

1
7 · 211 −

1
9 · 214 − etc.

− 1
1 · 24 −

1
3 · 210 −

1
5 · 216 +

1
7 · 222 −

1
9 · 228 + etc.

§ 90a These and many others follow, if one puts x = 1; but if we put x =
√

3
that arctan x = 60◦, it will be u = 30◦ and sin u = 1

2 , sin 2u =
√

3
2 , sin 3u = 1,

sin 4u =
√

3
2 , sin 5u = 1

2 , sin 6u = 0, sin 7u = − 1
2 etc., whence it will be
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arctan(
√

3 + ω) = 60◦ +
ω

1 · 22 −
ω2
√

3
2 · 23 +

ω3

3 · 23 −
ω4
√

3
4 · 25 +

ω5

5 · 26 −
ω7

7 · 28

+
ω8
√

3
8 · 29 −

ω9

9 · 29 +
ω10
√

3
10 · 211 −

ω11

11 · 212 + etc.

But if one puts x = 1√
3
, so that arctan x = 30◦, it will be u = 60◦ and

sin u =
√

3
2 , sin 2u =

√
3

2 , sin 3u = 0, sin 4u = −
√

3
2 , sin 6u = 0, sin 7u =

√
3

2
etc., having substituted which values it will be

arctan
(

1√
3
+ ω

)
= 30◦ +

3ω

1 · 22 −
3ω2
√

3
2 · 23 +

32ω4
√

3
4 · 25 − 33ω5

5 · 25 + etc.;

therefore, if ω = − 1√
3
, because of 30◦ = π

6 , it will be

π

6
√

3
=

1
1 · 22 +

1
2 · 23 −

1
4 · 25 −

1
5 · 26 +

1
7 · 28 +

1
8 · 29 − etc.

§91 Let us return to the general expression we found, i.e.

arctan(x + ω)

= arctan x +
ω

1
sin u · sin u− ω2

2
sin2 u · sin 2u +

ω3

3
sin3 u · sin 3u− etc.

and let us put ω = −x, so that arctan(x + ω) = 0 and it will be

arctan x =
x
1

sin u · sin u +
x2

2
sin2 u · sin 2u +

x3

3
sin3 u · sin 3u + etc.

But because arctan x = 90◦ − u = π
2 − u, it will be x = cot u = cos u

sin u . Therefore,
it will be

π

2
= u+ cos u · sin u+

1
2

cos2 u · sin 2u+
1
3

cos3 u · sin 3u+
1
4

cos4 u · sin 4u+ etc.,

which series is even more remarkable, since, whatever arc is taken for u, the
value of the series always turns out to be the same, = π

2 .
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But if ω = −2x, because of arctan(−x) = − arctan x, it will be

2 arctan x =
2x
1

sin u · sin u +
4x2

2
sin2 u · sin 2u +

8
3

sin3 u · sin 3u + etc.

But because arctan x = π
2 − u and x = cos u

sin u , it will be

π = 2u +
2
1

cos u · sin u +
22

2
cos2 u · sin 2u +

23

3
cos3 u · sin 3u + etc.

Let u = 45◦; it will be cos u = 1√
2
, sin u = 1√

2
, sin 2u = 1, sin 3u = 1√

2
,

sin 4u = 0, sin 5u = −1√
2
, sin 6u = −1, sin 7u = −1√

2
, sin 8u = 0, sin 9u = 1√

2
etc.

and it will be

π

2
=

1
1
+

2
2
+

2
3
− 25

5
− 23

6
− 23

7
+

24

9
+

25

10
+

25

11
− etc.,

which series, even though it diverges, nevertheless is remarkable for its sim-
plicity.

§92 In the general expression we found put

ω = −x− 1
x
=

−1
sin u · cos u

;

because of x = cos u
sin u , it will be

arctan(x + ω) = arctan
(
−1

x

)
= − arctan

1
x
= −π

2
+ arctan x.

Therefore, one will hence obtain the following expression

π

2
=

sin u
1 cos u

+
sin 2u

2 cos2 u
+

sin 3u
3 cos3 u

+
sin 4u

4 cos4 u
+

sin 5u
5 cos5 u

+ etc.,

which, having put u = 45◦, gives the same series we found last.

But if we put ω = −
√

1 + xx, because of x = cos u
sin u , it will be

ω = − 1
sin u

and
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arctan(x−
√

1 + xx) = − arctan(
√

1 + xx− x)

= −1
2

arctan
1
x
= −1

2

(π

2
− arctan x

)
= −1

2
u

and

arctan x =
π

2
− u.

Therefore, it will be

π

2
=

1
2

u +
1
1

sin u +
1
2

sin 2u +
1
3

sin 3u +
1
4

sin 4u + etc.

Therefore, if this equation is differentiated, it will be

0 =
1
2
+ cos u + cos 2u + cos 3u + cos 4u + cos 5u + etc.,

whose correctness is seen from the nature of recurring series.

§93 In like manner, if the series found before are differentiated, new summa-
ble series will be found. First, from the series

arctan(1 + ω) =
π

4
+

ω

2
− ω2

2 · 2 +
ω3

3 · 4 −
ω5

5 · 8 +
ω6

6 · 8 − etc.

it follows

1
2 + 2ω + ω2 =

1
2
− ω

2
+

ω2

4
− ω4

8
+

ω5

8
− ω6

16
+

ω8

32
− etc.,

which results from the expansion of this fraction 2−2ω+ω2

4+ω4 = 1
2+2ω+ω2 .

Further, this series

π

2
= u+ cos u · sin u+

1
2

cos2 u · sin 2u+
1
3

cos3 u · sin 3u+
1
4

cos4 · sin 4u+ etc.,

by means of differentiation, will give

0 = 1 + cos 2u + cos · cos 3u + cos2 u · cos 4u + cos3 u · cos 5u + etc.

Finally, the series
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π

2
=

sin u
cos u

+
sin 2u

2 cos2 u
+

sin 3u
3 cos3 u

+
sin 4u

4 cos4 u
+ etc.

gives

0 =
1

cos2 u
+

cos u
cos3 u

+
cos 2u
cos4 u

+
cos 3u
cos5 u

+
cos 4u
cos6 u

+ etc.

or

0 = 1 +
cos u
cos u

+
cos 2u
cos2 u

+
cos 3u
cos3 u

+
cos 4u
cos4 u

+
cos 5u
cos5 u

+ etc.

§94 But especially the expression we found

arctan(x + ω)

= arctan x +
ω

1
sin u · sin u− ω2

2
sin2 u · sin 2u +

ω3

3
sin3 u · sin 3u− etc.,

while

x = cot u or u = arccot x = 90◦ − arctan x,

can be applied to the angle or the arc corresponding to a given certain tangent.
For, let the tangent = t be propounded and, consulting tables, find the tangent
coming closet to this, call it x, to which the arc = y corresponds, and it will be
u = 90◦ − y. Then, put x + ω = t or ω = t− x and the arc in question will be

= y +
ω

1
sin u · sin u− ω2

2
· sin 2u + etc.,

which rule is especially useful, when the propounded tangent was very
large and therefore the arc in question hardly deviates from 90◦. For, in
these cases, because of the rapidly increasing tangents, the usual method
of interpolation leads too far away from the true value. Therefore, let this
example be propounded.

EXAMPLE

Let the arc be in question, whose tangent is = 100, having put the radius = 1, of
course.

The arc approximately equal to the one in question is 89◦25I, whose tangent is
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x = 98.217943

subtract this from t = 100.000000

it will remain ω = 1.782057
Further, because y = 89◦25I, it will be u = 35I, 2u = 1◦10I, 3u = 1◦45I etc.
Now investigate each term by means of logarithms.
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To log ω = 0.2509125

add log sin u = 8.0077867

log sin u = 8.0077867

subtract log ω sin u · sin u = 6.2664949

4.6855749

= 1.5809200

Therefore ω sin u · sin u = 38.09956 seconds

To log ω sin2 u = 6.2664949

add log ω = 0.2509215

log 2u = 8.3087941

subtract 4.8262105

log 2 = 0.3010300

log
1
2

ω2 sin2 u · 2u = 4.5251805

subtract 4.6855749

it remains 9.8396056

Therefore
1
2

ω2 sin2 u · sin 2u = 0.6912000 seconds

Further to log ω3 = 0.7527645

log sin3 u = 4.0233601

subtract log sin 3u = 3.2609725

log 3 = 0.4771213

2.7838512

subtract 4.6855749

8.0982763

Therefore
1
3

ω3 sin3 u · sin 3u = 0.0125400 seconds.
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Finally, to log ω4 = 1.0036860

add log sin4 u = 2.0311468

log sin 4u = 8.6097341

1.6445669

subtract log 4 = 0.6020600

1.0425069

subtract 4.6855749

6.3569320

Therefore,

1
4

ω4 sin4 u = 0.00023 seconds

Hence

Terms to be added Terms to be subtracted

38.09956 0.69120

0.01254 0.00023

subtract 0.69143

Hence in total

37.4067 = 37II25III14IV24V36VI.

Therefore, the arc, whose tangent is hundred times the radius, will be

89◦25I37II25III14IV24V36VI

and the error does not affect the fourth, but can only occur the fifth, whence
we will be able to confirm that this angle is almost = 89◦25I37II25III14IV. If
an even greater tangent is propounded, even though ω might turn out to be
larger, because of the still small angle u, one will nevertheless be able to define
the arc in a convenient way.
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§95 Since here we substituted an arc of the circle for y, let us now substitute
the inverse functions for y, i.e. sin x, cos x, tan x, cot x etc. Therefore, let
y = sin x, and, having written x + ω instead of x, it will be z = sin(x + ω)
and the equation

z = y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.,

because of

dy
dx

= cos x,
ddy
dx2 = − sin x,

d3y
dx3 = − cos x,

d4y
dx4 = sin x etc.,

will give

sin(x + ω) = sin x + ω cos x− 1
2

ω2 sin x− 1
6

ω3 cos x +
1

24
ω4 sin x + etc.

and, having taken a negative ω, it will be

sin(x−ω) = sin x−ω cos x− 1
2

ω2 sin x +
1
6

ω3 cos x +
1

24
ω4 sin x− etc.

So, if one sets y = cos x, because of

dy
dx

= − sin x,
ddy
dx2 = − cos x,

d3y
dx3 = sin x,

d4y
dx4 = cos x etc.,

it will be

cos(x + ω) = cos x−ω sin x− 1
2

ω2 cos x +
1
6

ω3 sin x +
1

24
ω4 cos x− etc.

and for a negative ω it will be

cos(x−ω) = cos x + ω sin x− 1
2

ω2 cos x− 1
6

ω3 sin x +
1

24
ω4 cos x + etc.
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§96 The use of these formulas is immense both for the construction and
interpolation of tables of sines and cosines. For, if the sines and cosines of a
certain arc x were known, from them the sines and cosines of the angles x + ω

and x−ω can be easily found, if the difference ω was sufficiently small; for,
in this case the found series converge rapidly. For this it is necessary that the
arc ω is expressed in parts of the radius; this, because the arc of 180◦ is

3.14159265358979323846,

is easily done; for, after a division by 180 it will be

arc of 1◦ = 0.017453292519943295769

arc of 1I = 0.000290888208665721596

arc of 1II = 0.000048481368110953599.

EXAMPLE 1

To find the sine and the cosine of the angles 45◦1I and 44◦59I, the given sine and
cosine of the angle 45◦, both of which are = 1√

2
= 0.707167811865.

Therefore, since

sin x = cos x = 0.7071067811865

and

ω = 0.0002908882086,

in order to perform the multiplication more easily, note that it will be
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2ω = 0.0005817764173

3ω = 0.0008726646259

4ω = 0.0011635528346

5ω = 0.0014544410433

6ω = 0.0017453292519

7ω = 0.0020362174606

8ω = 0.0023271056693

9ω = 0.0026179938779

Therefore, ω sin x and ω cos x will be found this way:

7 · 0.00020362174606

0 ·

7 · 0.00000203621746

1 · 2908882

0 ·

6 · 174532

7 · 20362

8 · 2327

1 · 29

1 · 2

8 · 2

6 · 0

In total

ω sin x = ω cos x = 0.00020568902488

Therefore,
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1
2

ω cos x = 0.00010284451244

by ω 1 · 0.00000002908882

0 ·

2 · 58177

8 · 23271

4 · 1163

4 · 116

5 · 14
1
2

ω2 cos x = 0.00000002991623

1
6

ω3 cos x = 0.00000000997208

by ω 9 · 0.0000000000261

9 · 26

7 · 2
1
6

ω3 cos x = 0.0000000000289

Therefore, to find sin 45◦1I to
sin x = 0.7071067811865

add ω cos x = 2056890249

0.7073124702114

subtract
1
2

ω2 sin x = 299162

0.7073124402952

subtract
1
6

ω3 cos x = 29

sin 45◦1I = 0.7073124402923 = cos 44◦59I

But to find cos 45◦1I from
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cos x = 0.7071067811865

subtract ω sin x = 2056890249

0.70769010921616

subtract
1
2

ω2 cos x = 299162

0.7069010622454

add
1
6

ω3 cos x = 29

cos 45◦1I = 0.7069010622483 = sin 44◦59I

EXAMPLE 2

Given sine and cosine of the arc 67◦30I, to find the sine and the cosine of the arcs
67◦31I and 67◦29I.

Let us perform this calculation in decimal fractions up to 7 digits, as the
common tables are usually constructed, and hence the task will easily be
solved applying logarithms. Because x = 67◦30I and ω = 0.000290888, it will
be

log ω = 6.4637259

and log sin x = 9.9656153 log cos x = 9.5828397

log ω = 6.6437259 log ω = 6.6437259

log ω sin x = 6.4293412 log ω cos x = 6.0465656

log
1
2

ω = 6.1626959 log
1
2

ω2 = 6.1626959

log
1
2

ω2 sin x = 2.59200371 log
1
2

ω2 cos x = 2.2092615

Therefore ω sin x = 0.00026874 ω cos x = 0.00011132
1
2

ω2 sin x = 0.00000004
1
2

ω2 cos x = 0.00000001

whence sin 67◦31I = 0.9239908 cos 67◦31I = 0.3824147

sin 67◦29I = 0.9237681 cos 67◦29I = 0.3829522
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where not even the terms 1
2 ω2 sin x and 1

2 ω2 cos x were necessary.

§97 From the series we found above,

sin(x + ω) = sin x + ω cos x− 1
2

ω2 sin x − 1
6

ω3 cos x +
1

24
ω4 sin x + etc.

cos(x + ω) = cos x−ω sin x − 1
2

ω2 cos x +
1
6

ω3 sin x +
1

24
ω4 cos x− etc.

sin(x−ω) = sin x −ω cos x− 1
2

ω2 sin x +
1
6

ω3 cos x +
1

24
ω4 sin x − etc.

cos(x−ω) = cos x + ω sin x − 1
2

ω2 cos x− 1
6

ω3 sin x +
1

24
ω4 cos x + etc.,

combining them we will find

sin(x + ω) + sin(x−ω)

2

= sin x− 1
2

ω2 sin x +
1

24
sin x− 1

720
ω6 sin x + etc. = sin x · cos ω

and

sin(x + ω)− sin(x−ω)

2

= ω cos x− 1
6

ω3 cos x +
1

120
ω5 cos x− 1

5040
ω7 cos x + etc. = cos x · sin ω,

whence the series found above for the sines and cosines result to be

cos ω = 1− 1
2

ω2 +
1
24

ω4 − 1
720

ω6 + etc.

sin ω = ω− 1
6

ω3 +
1

120
ω5 − 1

5040
ω7 + etc.,

which same series follow from the first for x = 0; for, because cos x = 1 and
sin x = 0, the first series will exhibit sin ω, the second on the other hand cos ω.
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§98 Now let us also put y = tan x, so that z = tan(x + ω); because of
y = sin x

cos x [§ 206 of the first part]

dy
dx

=
1

cos2 x
,

ddy
2dx2 =

sin x
cos3 x

,
d3y

2dx3 =
1

cos2 x
+

3 sin2 x
cos4 x

=
3

cos4 x
− 2

cos2 x
,

d4y
2 · 4dx4 =

3 sin x
cos5 x

− sin x
cos3 x

,
d5y
2 · 4 =

15
cos6 x

− 15
cos4 x

+
2

cos2 x
,

whence it follows that

tan(x + ω) = tan x +


ω

cos2 x
+

ω2 sin x
cos3 x

+
ω3

cos4 x
+

ω4 sin x
cos5 x

+ etc.

− 2ω3

3 cos2 x
− ω4 sin x

3 cos3 x
− etc.

by means of which formula, given tangent of any angle, one can find the
tangents of angles very close to it. Since the above series is a geometric one,
having collected it into one sum, it will be

tan(x + ω) = tan x +
ω + ω2 tan x
cos2 x−ω2 −

2ω3

3 cos2 x
− ω4 sin x

3 cos3 x
− etc.

or

tan(x + ω) =
sin x · cos x + ω

cos2 x−ω2 − 2ω3

3 cos2 x
− ω4 sin x

3 cos3 x
− etc.,

which formula is applied more conveniently for this aim.

§99 Similar expressions can also be found for the logarithms of sines, cosines
and tangents. For, let y = a logarithm of the sine of the angle x, which we want
to express as y = log sin x, and z = log sin(x + ω); because of dy

dx = n cos x
sin x , it

will be ddy
dx2 = −n

sin2 x
, d3y

dx3 = +2n cos x
sin3 x

etc., whence it will be

z = log sin(x + ω) = log sin x +
nω cos x

sin x
− nω2

2 sin2 x
+

nω3 cos x
3 sin3 x

− etc.,
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where n denotes the number, by which the hyperbolic must be multiplied that
the propounded logarithms result. But if y = tan x and z = log tan(x + ω), it
will be dy

dx = n
sin x·cos x = 2n

sin 2x , ddy
2dx2 = −2n cos 2x

(sin 2x)2 etc. and hence

log tan(x + ω) = log tan x +
2nω

sin 2x
− 2nω2 cos 2x

(sin 2x)2 + etc.,

by means of which formulas the logarithms of sines and tangents can be
interpolated.

§100 Let us put that y denotes the arc, whose logarithm of the sine is = x, or
that y = A . log x, and that z is the arc, whose logarithm of the sine we want
to put = x + ω or z = A . log sin(x + ω); it will be x = log sin y and

dx
dy

=
n cos y
sin y

, whence
dy
dx

=
sin y

n cos y
;

it will be

ddy
dx

=
dy

n cos2 y
=

dx sin y
n2 cos3 y

, therefore
ddy
dx2 =

sin y
n2 cos3 y

.

As a logical consequence

z = y +
ω sin y
n cos y

+
ω2 sin y

2n2 cos3 y
+ etc.

In like manner, given the logarithm of a cosine, the expression will be found.

But if y = A . log tan x and z = A . log(x + ω), since x = log tan y, it will be

dx
dy

=
n

sin y · cos y
and

dy
dx

=
sin y · cos y

n
=

sin 2y
2n

,

whence

ddy
dx

=
2dy cos 2y

2n
=

dx sin 2y · cos 2y
2nn

and

ddy
dx2 =

sin 2y · cos 2y
2nn

=
sin 4y
4nn

,
d3y
dx3 =

sin 2y · 4y
2n3 etc.;

hence

37



z = y +
ω sin 2y

2n
+

ω2 sin 2y · cos 2y
4nn

+
ω3 sin 2y · cos 4y

12n3 + etc.

§101 Since the use of these expressions for the construction of tables of loga-
rithms of sines and cosines can easily be seen from the preceding paragraphs,
we will not treat this here any longer. Therefore, lastly let us consider the
value y = ex sin nx and let z = ex+ω sin n(x + ω); since

dy
dx

= ex(sin nx + n cos nx)

ddy
dx2 = ex((1− nn) sin nx + 2n cos nx)

d3y
dx3 = ex((1− 3nn) sin nx + n(3− nn) cos nx)

d4y
dx4 = ex((1− 6nn + n4) sin nx + n(4− 4nn) cos nx)

d5y
dx5 = ex((1− 10nn + 5n4) sin nx + n(5− 10nn + n4) cos nx),

etc.;

having substituted these values and having divided by ex, it will be

eω sin n(x + ω) = sin nx

+ω sin nx+
1− nn

2
ω2 sin nx+

1− 3nn
6

ω3 sin nx+
1− 6nn + n4

24
ω4 sin nx+ etc.

+nω cos nx+
2n
2

ω2 cos nx+
n(3− nn)

6
ω3 cos nx+

n(4− 4nn)
24

ω4 cos nx+ etc.

§102 Hence many extraordinary corollaries can be deduced; but it suffices
for us to have mentioned the following things here. If it was x = 0, it will be

eω sin nω = nω+
2n
2

ω2 +
n(3− nn)

6
ω3 +

n(4− nn)
24

ω4 +
n(5− 10n2 + n4)

120
ω5 + etc.

If ω = −x, because of sin n(x + ω) = 0, it will be
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tan nx =
nx− 2n

2 x2 + n(3−nn)
6 x3 − n(4−4nn)

24 x4 + n(5−10n2+n4)
120 x5 − etc.

1− x + 1−nn
2 x2 − 1−3nn

6 x3 + 1−6nn+n4

24 x4 − etc.

But in general, if n = 1, one will have

eω sin(x + ω) = sin x
(

1 + ω− 1
3

ω3 − 1
6

ω4 − 1
30

ω5 +
1

630
ω7 + etc.

)

+ω cos x
(

1 + ω +
1
3

ω2 − 1
30

ω4 − 1
90

ω5 − 1
630

ω6 + etc.
)

But if it is n = 0, because sin n(x + ω) = n(x + ω) and sin nx = nx and
cos nx = 1, and if one divides by n everywhere, we have

eω(x + ω) = x + ωx +
1
2

ω2x +
1
6

ω3x +
1
24

ω4x + etc.

+ω + ω2 +
1
2

ω3 +
1
6

ω4 +
1
24

ω5 + etc.,

the validity of which equation is obvious.
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